廣西貴港市港北區(qū)2025屆數(shù)學(xué)八下期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
廣西貴港市港北區(qū)2025屆數(shù)學(xué)八下期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
廣西貴港市港北區(qū)2025屆數(shù)學(xué)八下期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
廣西貴港市港北區(qū)2025屆數(shù)學(xué)八下期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
廣西貴港市港北區(qū)2025屆數(shù)學(xué)八下期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

廣西貴港市港北區(qū)2025屆數(shù)學(xué)八下期末學(xué)業(yè)水平測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.如圖,在平行四邊形ABCD中,AB=4,CE平分∠BCD交AD邊于點E,且AE=3,則BC的長為()A.4 B.6 C.7 D.82.人體血液中,紅細胞的直徑約為0.0000077m.用科學(xué)記數(shù)法表示0.0000077m是()A.0.77×10﹣5 B.7.7×10﹣5 C.7.7×10﹣6 D.77×10﹣73.已知a、b、c是的三邊,且滿足,則一定是()A.等腰三角形 B.等邊三角形 C.直角三角形 D.等腰直角三角形4.如果邊長相等的正五邊形和正方形的一邊重合,那么∠1的度數(shù)是()A.30° B.15° C.18° D.20°5.如圖,菱形ABCD中,∠A是銳角,E為邊AD上一點,△ABE沿著BE折疊,使點A的對應(yīng)點F恰好落在邊CD上,連接EF,BF,給出下列結(jié)論:①若∠A=70°,則∠ABE=35°;②若點F是CD的中點,則S△ABES菱形ABCD下列判斷正確的是()A.①,②都對 B.①,②都錯 C.①對,②錯 D.①錯,②對6.下列圖案中,不是中心對稱圖形的是()A. B.C. D.7.下列圖形中,既是軸對稱圖形又是中心對稱圖形的有()A.4個 B.3個 C.2個 D.1個8.若分式無意義,則()A. B. C. D.9.下列各組多項式中,沒有公因式的是()A.a(chǎn)x﹣bx和by﹣ay B.3x﹣9xy和6y2﹣2yC.x2﹣y2和x﹣y D.a(chǎn)+b和a2﹣2ab+b210.如圖,矩形ABCD中,AB=8,BC=4,把矩形ABCD沿過點A的直線AE折疊,點D落在矩形ABCD內(nèi)部的點D′處,則CD′的最小值是()A.4 B. C. D.二、填空題(每小題3分,共24分)11.如圖,在菱形中,對角線交于點,過點作于點,已知BO=4,S菱形ABCD=24,則___.12.命題“在中,如果,那么是等邊三角形”的逆命題是_____.13.把拋物線y=2(x﹣1)2+1向左平移1個單位,再向上平移2個單位得到的拋物線解析式_____.14.在矩形ABCD中,再增加條件_____(只需填一個)可使矩形ABCD成為正方形.15.李老師開車從甲地到相距240千米的乙地,如果油箱剩余油量y(升)與行駛里程x(千米)之間是一次函數(shù)關(guān)系,其圖象如圖所示,那么到達乙地時油箱剩余油量是升.16.如圖在菱形ABCD中,∠A=60°,AD=,點P是對角線AC上的一個動點,過點P作EF⊥AC交AD于點E,交AB于點F,將△AEF沿EF折疊點A落在G處,當(dāng)△CGB為等腰三角形時,則AP的長為__________.17.已知關(guān)于x的一元二次方程x2+mx+n=0的兩個實數(shù)根分別為x1=﹣3,x2=4,則m+n=_____.18.已知α、β是一元二次方程x2﹣2019x+1=0的兩實根,則代數(shù)式(α﹣2019)(β﹣2019)=_____.三、解答題(共66分)19.(10分)如圖,△ABC中AC=BC,點D,E在AB邊上,連接CD,CE.(1)如圖1,如果∠ACB=90°,把線段CD逆時針旋轉(zhuǎn)90°,得到線段CF,連接BF,①求證:△ACD≌△BCF;②若∠DCE=45°,求證:DE2=AD2+BE2;(2)如圖2,如果∠ACB=60°,∠DCE=30°,用等式表示AD,DE,BE三條線段的數(shù)量關(guān)系,說明理由.20.(6分)實驗中學(xué)學(xué)生在學(xué)習(xí)等腰三角形性質(zhì)“三線合一”時(1)(探究發(fā)現(xiàn))如圖1,在△ABC中,若AD平分∠BAC,AD⊥BC時,可以得出AB=AC,D為BC中點,請用所學(xué)知識證明此結(jié)論.(2)(學(xué)以致用)如果Rt△BEF和等腰Rt△ABC有一個公共的頂點B,如圖2,若頂點C與頂點F也重合,且∠BFE=∠ACB,試探究線段BE和FD的數(shù)量關(guān)系,并證明.(3)(拓展應(yīng)用)如圖3,若頂點C與頂點F不重合,但是∠BFE=∠ACB仍然成立,(學(xué)以致用)中的結(jié)論還成立嗎?證明你的結(jié)論.21.(6分),若方程無解,求m的值22.(8分)如圖,在平行四邊形中,點、分別是、上的點,且,,求證:(1);(2)四邊形是菱形.23.(8分)四邊形ABCD是正方形,AC與BD,相交于點O,點E、F是直線AD上兩動點,且AE=DF,CF所在直線與對角線BD所在直線交于點G,連接AG,直線AG交BE于點H.(1)如圖1,當(dāng)點E、F在線段AD上時,求證:∠DAG=∠DCG;(2)如圖1,猜想AG與BE的位置關(guān)系,并加以證明;(3)如圖2,在(2)條件下,連接HO,試說明HO平分∠BHG.24.(8分)如圖,正方形ABCD,AB=4,點M是邊BC的中點,點E是邊AB上的一個動點,作EG⊥AM交AM于點G,EG的延長線交線段CD于點F.(1)如圖①,當(dāng)點E與點B重合時,求證:BM=CF;(2)設(shè)BE=x,梯形AEFD的面積為y,求y與x的函數(shù)解析式,并寫出定義域.25.(10分)甲、乙兩個筑路隊共同承擔(dān)一段一級路的施工任務(wù),甲隊單獨施工完成此項任務(wù)比乙隊單獨施工完成此項任務(wù)多用15天.且甲隊單獨施工60天和乙隊單獨施工40天的工作量相同.(1)甲、乙兩隊單獨完成此項任務(wù)各需多少天?(2)若甲、乙兩隊共同工作了4天后,乙隊因設(shè)備檢修停止施工,由甲隊單獨繼續(xù)施工,為了不影響工程進度,甲隊的工作效率提高到原來的2倍,要使甲隊總的工作量不少于乙隊的工作量的2倍,那么甲隊至少再單獨施工多少天?26.(10分)定義:我們把對角線互相垂直的四邊形叫做垂美四邊形.(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,那么四邊形ABCD是垂美四邊形嗎?請說明理由.(2)性質(zhì)探究:①如圖1,垂美四邊形ABCD兩組對邊AB、CD與BC、AD之間有怎樣的數(shù)量關(guān)系?寫出你的猜想,并給出證明.②如圖3,在Rt△ABC中,點F為斜邊BC的中點,分別以AB,AC為底邊,在外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點M,N.試猜想四邊形FMAN的形狀,并說明理由;(3)問題解決:如圖4,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE、BG,GE,已知AC=2,AB=1.求GE的長度.

參考答案一、選擇題(每小題3分,共30分)1、C【解析】

由平行四邊形的性質(zhì)可得AD∥BC,且AD=BC,結(jié)合角平分線的性質(zhì)可求得DE=DC=AB=1,則可求得AD的長,可求得答案.【詳解】解:∵四邊形ABCD為平行四邊形,∴AB=CD=1,AD∥BC,AD=BC,∴∠DEC=∠BCE.∵CE平分∠BCD,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=1.∵AE=3,∴AD=BC=3+1=2.故選C.【點睛】本題主要考查平行四邊形的性質(zhì),利用平行線的性質(zhì)及角平分線的性質(zhì)求得DE=DC是解題的關(guān)鍵.2、C【解析】

絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】解:故選C.3、C【解析】

由a3-ac2-ab2=0知a(a2-c2-b2)=0,結(jié)合a≠0得出a2=b2+c2,根據(jù)勾股定理逆定理可得答案.【詳解】解:∵a、b、c是△ABC的三邊,

∴a≠0,b≠0,c≠0,

又a3-ac2-ab2=0,

∴a(a2-c2-b2)=0,

則a2-c2-b2=0,即a2=b2+c2,

∴△ABC一定是直角三角形.

故選:C.【點睛】本題考查因式分解的應(yīng)用,解題的關(guān)鍵是掌握勾股定理逆定理與因式分解的運用.4、C【解析】

∠1的度數(shù)是正五邊形的內(nèi)角與正方形的內(nèi)角的度數(shù)的差,根據(jù)多邊形的內(nèi)角和定理求得角的度數(shù),進而求解.【詳解】∵正五邊形的內(nèi)角的度數(shù)是×(5-2)×180°=108°,正方形的內(nèi)角是90°,

∴∠1=108°-90°=18°.故選C【點睛】本題考查了多邊形的內(nèi)角和定理、正五邊形和正方形的性質(zhì),求得正五邊形的內(nèi)角的度數(shù)是關(guān)鍵.5、A【解析】

只要證明,可得,即可得出;延長EF交BC的延長線于M,只要證明≌,推出,可得,,推出.【詳解】①∵四邊形ABCD是菱形,∴AB∥CD,∠C=∠A=70°.∵BA=BF=BC,∴∠BFC=∠C=70°,∴∠ABF=∠BFC=70°,∴∠ABE∠ABF=35°,故①正確;②如圖,延長EF交BC的延長線于M,∵四邊形ABCD是菱形,F(xiàn)是CD中點,∴DF=CF,∠D=∠FCM,∠EFD=∠MFC,∴△DEF≌△CMF,∴EF=FM,∴S四邊形BCDE=S△EMB,S△BEFS△MBE,∴S△BEFS四邊形BCDE,∴S△ABES菱形ABCD.故②正確,故選A.【點睛】本題考查了菱形的性質(zhì)、等腰三角形的判定和性質(zhì)、全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題.6、D【解析】

把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形;對于圖A,分析可知,其繞著圖形的圓心旋轉(zhuǎn)180°后與原來的圖形重合,故是中心對稱圖形,同理再分析其他選項即可.【詳解】根據(jù)中心對稱圖形的概念可知,A、B、C都是中心對稱圖形,不符合題意;D不是中心對稱圖形,符合題意.故選:D.【點睛】本題考查了中心對稱圖形的判斷,解題的關(guān)鍵是掌握中心對稱圖形定義;7、C【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念進行求解,軸對稱圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是圖形沿對稱中心旋轉(zhuǎn)180度后與原圖重合.【詳解】第1個和第4個圖既是軸對稱圖形又是中心對稱圖形,中間兩個只是軸對稱圖形,不是中心對稱圖形.故選C.8、D【解析】

根據(jù)分母等于零列式求解即可.【詳解】由題意得x-1=0,∴.故選D.【點睛】本題考查了分式有意義的條件,當(dāng)分母不等于零時,分式有意義;當(dāng)分母等于零時,分式無意義.分式是否有意義與分子的取值無關(guān).9、D【解析】

直接利用公因式的確定方法:①定系數(shù),即確定各項系數(shù)的最大公約數(shù);②定字母,即確定各項的相同字母因式(或相同多項式因式);③定指數(shù),即各項相同字母因式(或相同多項式因式)的指數(shù)的最低次冪,進而得出答案.【詳解】A、ax﹣bx=x(a﹣b)和by﹣ay=﹣y(a﹣b),故兩多項式的公因式為:a﹣b,故此選項不合題意;B、3x﹣9xy=3x(1﹣3y)和6y2﹣2y=﹣2y(1﹣3y),故兩多項式的公因式為:1﹣3y,故此選項不合題意;C、x2﹣y2=(x﹣y)(x+y)和x﹣y,故兩多項式的公因式為:x﹣y,故此選項不合題意;D、a+b和a2﹣2ab+b2=(a﹣b)2,故兩多項式?jīng)]有公因式,故此選項符合題意;故選:D.【點睛】此題主要考查了公因式,正確把握確定公因式的方法是解題關(guān)鍵.10、C【解析】

根據(jù)翻折的性質(zhì)和當(dāng)點D'在對角線AC上時CD′最小解答即可.【詳解】解:當(dāng)點D'在對角線AC上時CD′最小,

∵矩形ABCD中,AB=4,BC=2,把矩形ABCD沿過點A的直線AE折疊點D落在矩形ABCD內(nèi)部的點D處,

∴AD=AD'=BC=2,

在Rt△ABC中,AC===4,

∴CD'=AC-AD'=4-4,

故選:C.【點睛】本題考查了翻折變換、矩形的性質(zhì)、勾股定理,利用勾股定理求出AC的長度是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【解析】

根據(jù)菱形面積=對角線積的一半可求,再根據(jù)勾股定理求出,然后由菱形的面積即可得出結(jié)果.【詳解】∵四邊形是菱形,∴,,∴,∵,∴,∴,∴,∵,∴;故答案為:.【點睛】本題考查了菱形的性質(zhì)、勾股定理以及菱形面積公式.熟練掌握菱形的性質(zhì),由勾股定理求出是解題的關(guān)鍵.12、如果是等邊三角形,那么.【解析】

把原命題的題設(shè)與結(jié)論進行交換即可.【詳解】“在中,如果,那么是等邊三角形”的逆命題是“如果是等邊三角形,那么”.故答案為:如果是等邊三角形,那么.【點睛】本題考查了命題與定理:判斷事物的語句叫命題;正確的命題稱為真命題,錯誤的命題稱為假命題;經(jīng)過推理論證的真命題稱為定理.也考查了逆命題.13、y=2x2+1.【解析】

先利用頂點式得到拋物線y=2(x﹣1)2+1頂點坐標(biāo)為(1,1),再根據(jù)點平移的坐標(biāo)特征得到點(1,1)平移后所得對應(yīng)點的坐標(biāo)為(0,1),然后根據(jù)頂點式寫出平移后的拋物線的解析式即可.【詳解】拋物線y=2(x﹣1)2+1頂點坐標(biāo)為(1,1),點(1,1)先向左平移2個單位,再向上平移1個單位后所得對應(yīng)點的坐標(biāo)為(0,1),所以平移后的拋物線的解析式為y=2x2+1.故答案是:y=2x2+1.【點睛】本題考查了拋物線的平移,根據(jù)平移規(guī)律得到平移后拋物線的頂點坐標(biāo)為(0,1)是解決問題的關(guān)鍵.14、AB=BC【解析】分析:根據(jù)領(lǐng)邊相等的矩形是正方形,即可判定四邊形ABCD是正方形.詳解:∵AB=BC,∴矩形ABCD是正方形.故答案為AB=BC點睛:本題考查了正方形的判定方法,熟練掌握正方形的判定方法是解題的關(guān)鍵.15、1【解析】解:由圖象可得出:行駛160km,耗油(35﹣25)=10(升),∴行駛240km,耗油×10=15(升),∴到達乙地時郵箱剩余油量是35﹣15=1(升).故答案為1.16、1或.【解析】

分兩種情形①CG=CB,②GC=GB,分別求解即可解決問題.【詳解】在菱形ABCD中,∵∠A=60°,AD=,∴AC=3,①當(dāng)CG=BC=時,AG=AC=CG=3-,∴AP=AG=.②當(dāng)GC=GB時,易知GC=1,AG=2,∴AP=AG=1,故答案為1或.【點睛】本題考查翻折變換、等腰三角形的性質(zhì)、勾股定理、菱形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想思考問題17、-1【解析】

根據(jù)根與系數(shù)的關(guān)系得出-3+4=-m,-3×4=n,求出即可.【詳解】解:∵關(guān)于x的一元二次方程x2+mx+n=0的兩個實數(shù)根分別為x1=﹣3,x2=4,∴﹣3+4=﹣m,﹣3×4=n,解得:m=﹣1,n=﹣12,∴m+n=﹣1,故答案為:﹣1.【點睛】本題考查了根與系數(shù)的關(guān)系的應(yīng)用,能根據(jù)根與系數(shù)的關(guān)系得出-3+4=-m,-3×4=n是解此題的關(guān)鍵.18、1【解析】

根據(jù)根與系數(shù)的關(guān)系可得:α+β=2019,αβ=1,將其代入(α﹣2019)(β﹣2019)=αβ-2019(α+β)+中即可求出結(jié)論.【詳解】∵α、β是一元二次方程x2﹣2019x+1=0的兩實根,∴α+β=2019,αβ=1,∴(α﹣2019)(β﹣2019)=αβ-2019(α+β)+=1.故答案為1.【點睛】本題考查了一元二次方程根與系數(shù)的關(guān)系,熟練運用一元二次方程根與系數(shù)的關(guān)系是解決問題的關(guān)鍵.三、解答題(共66分)19、(1)①詳見解析;②詳見解析;(2)DE2=EB2+AD2+EB·AD,證明詳見解析【解析】

(1)①根據(jù)旋轉(zhuǎn)的性質(zhì)可得CF=CD,∠DCF=90°,再根據(jù)已知條件即可證明△ACD≌△BCF;②連接EF,根據(jù)①中全等三角形的性質(zhì)可得∠EBF=90°,再證明△DCE≌△FCE得到EF=DE即可證明;(2)根據(jù)(1)中的思路作出輔助線,通過全等三角形的判定及性質(zhì)得出相等的邊,再由勾股定理得出AD,DE,BE之間的關(guān)系.【詳解】解:(1)①證明:由旋轉(zhuǎn)可得CF=CD,∠DCF=90°∵∠ACD=90°∴∠ACD=∠BCF又∵AC=BC∴△ACD≌△BCF②證明:連接EF,由①知△ACD≌△BCF∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD,BF=AD∴∠EBF=90°∴EF2=BE2+BF2,∴EF2=BE2+AD2又∵∠ACB=∠DCF=90°,∠CDE=45°∴∠FCE=∠DCE=45°又∵CD=CF,CE=CE∴△DCE≌△FCE∴EF=DE∴DE2=AD2+BE2⑵DE2=EB2+AD2+EB·AD理由:如圖2,將△ADC繞點C逆時針旋轉(zhuǎn)60°,得到△CBF,過點F作FG⊥AB,交AB的延長線于點G,連接EF,∴∠CBE=∠CAD,∠BCF=∠ACD,BF=AD∵AC=BC,∠ACB=60°∴∠CAB=∠CBA=60°∴∠ABE=120°,∠EBF=60°,∠BFG=30°∴BG=BF,F(xiàn)G=BF∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,∴∠ECF=∠FCB+∠BCE=30°∵CD=CF,CE=CE∴△ECF≌△ECD∴EF=ED在Rt△EFG中,EF2=FG2+EG2又∵EG=EB+BG∴EG=EB+BF,∴EF2=(EB+BF)2+(BF)2∴DE2=(EB+AD)2+(AD)2∴DE2=EB2+AD2+EB·AD【點睛】本題考查了全等三角形的性質(zhì)與旋轉(zhuǎn)模型,解題的關(guān)鍵是找出全等三角形,轉(zhuǎn)換線段,并通過勾股定理的計算得出線段之間的關(guān)系.20、(1)見解析;(2)結(jié)論:DF=2BE;(3)結(jié)論不變:DF=2BE.【解析】

(1)只要證明△ADB≌△ADC(ASA)即可.(2)結(jié)論:DF=2BE.如圖2中,延長BE交CA的延長線于K.想辦法證明△BAK≌△CAD(ASA)即可解決問題.(3)如圖3中,結(jié)論不變:DF=2BE.作FK∥CA交BE的延長線于K,交AB于J.利用(2)中結(jié)論證明即可.【詳解】解:(1)如圖1中,∵AD⊥BC,∴∠ADB=∠ADC=90°,∵DA平分∠BAC,∴∠DAB=∠DAC,∵AD=AD,∴△ADB≌△ADC(ASA),∴AB=AC,BD=DC.(2)結(jié)論:DF=2BE.理由:如圖2中,延長BE交CA的延長線于K.∵CE平分∠BCK,CE⊥BK,∴由(1)中結(jié)論可知:CB=CK,BE=KE,∵∠∠BAK=∠CAD=∠CEK=90°,∴∠ABK+∠K=90°,∠ACE+∠K=90°,∴∠ABK=∠ACD,∵AB=AC,∴△BAK≌△CAD(ASA),CD=BK,∴CD=2BE,即DF=2BE.(3)如圖3中,結(jié)論不變:DF=2BE.理由:作FK∥CA交BE的延長線于K,交AB于J.∵FK∥AC,∴∠FJB=∠A=90°,∠BFK=∠BCA,∵∠JBF=45°,∴△BJF是等腰直角三角形,∵∠BFE=ACB,∴∠BFE=∠BFJ,由(2)可知:DF=2BE.【點睛】三角形綜合題,考查了等腰直角三角形的性質(zhì)和判定,全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題21、m的值為-1或-6或【解析】

分式方程去分母轉(zhuǎn)化為整式方程,整理后根據(jù)一元一次方程無解條件求出m的值;由分式方程無解求出x的值,代入整式方程求出m的值即可.【詳解】解:方程兩邊同時乘以(x+2)(x-1)得:整理得:當(dāng)m+1=0時,該方程無解,此時m=-1;當(dāng)m+1≠0時,則原方程有增根,原方程無解,∵原分式方程有增根,∴(x+2)(x-1)=0,解得:x=-2或x=1,當(dāng)x=-2時,;當(dāng)x=1時,m=-6∴m的值為-1或-6或【點睛】此題考查了分式方程的解,弄清分式方程無解的條件是解本題的關(guān)鍵.22、(1)證明見解析;(2)證明見解析.【解析】

(1)由平行四邊形的性質(zhì)得出∠A=∠C,由ASA證明△DAE≌△DCF,即可得出DE=DF;

(2)由全等三角形的性質(zhì)得出DA=DC,即可得出結(jié)論.【詳解】證明:(1)∵四邊形ABCD是平行四邊形∴∠A=∠C,在△DAE和△DCF中,,∴△DAE≌△DCF(ASA),∴DE=DF;(2)由(1)可得△DAE≌△DCF∴DA=DC,又∵四邊形ABCD是平行四邊形∴四邊形ABCD是菱形.【點睛】本題考查了菱形的判定、平行四邊形的性質(zhì)、全等三角形的判定與性質(zhì);熟練掌握平行四邊形的性質(zhì),證明三角形全等是解題的關(guān)鍵.23、(1)證明見解析(2)AG⊥BE(3)證明見解析【解析】

(1)根據(jù)正方形的性質(zhì)得DA=DC,∠ADB=∠CDB=45°,則可根據(jù)“SAS”證明△ADG≌△CDG,所以∠DAG=∠DCG;(2)根據(jù)正方形的性質(zhì)得AB=DC,∠BAD=∠CDA=90°,根據(jù)“SAS”證明△ABE≌△DCF,則∠ABE=∠DCF,由于∠DAG=∠DCG,所以∠DAG=∠ABE,然后利用∠DAG+∠BAG=90°得到∠ABE+∠BAG=90°,于是可判斷AG⊥BE;(3)如答圖1所示,過點O作OM⊥BE于點M,ON⊥AG于點N,證明△AON≌△BOM,可得四邊形OMHN為正方形,因此HO平分∠BHG結(jié)論成立.【詳解】(1)證明:∵四邊形ABCD為正方形,∴DA=DC,∠ADB=∠CDB=45°,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠DAG=∠DCG;(2)解:AG⊥BE.理由如下:∵四邊形ABCD為正方形,∴AB=DC,∠BAD=∠CDA=90°,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,∵∠DAG=∠DCG,∴∠DAG=∠ABE,∵∠DAG+∠BAG=90°,∴∠ABE+∠BAG=90°,∴∠AHB=90°,∴AG⊥BE;(3)解:由(2)可知AG⊥BE.如答圖1所示,過點O作OM⊥BE于點M,ON⊥AG于點N,則四邊形OMHN為矩形.∴∠MON=90°,又∵OA⊥OB,∴∠AON=∠BOM.∵∠AON+∠OAN=90°,∠BOM+∠OBM=90°,∴∠OAN=∠OBM.在△AON與△BOM中,,∴△AON≌△BOM(AAS).∴OM=ON,∴矩形OMHN為正方形,∴HO平分∠BHG.【點睛】此題是四邊形綜合題,主要考查了正方形的性質(zhì),矩形的判定和性質(zhì),全等三角形的判定和性質(zhì),角平分線的意義,垂直的判定,利用全等三角形的判斷方法判斷三角形是解本題的關(guān)鍵.24、(1)見解析;(2)y與x的函數(shù)解析式為y=12-4x(0≤x<【解析】

(1)證明△BAM≌△CBF,根據(jù)全等三角形的性質(zhì)證明;(2)作EH⊥CD于H,根據(jù)全等三角形的性質(zhì)求出FH,再根據(jù)梯形的面積公式計算即可.【詳解】(1)證明:∵GE⊥AM,∴∠BAM+∠ABG=90°,又∠CBF+∠ABG=90°,在△BAM和△CBF中,∠BAM=∠CBF,AB=BC,∠ABM=∠BCF,∴△BAM≌△CBF(ASA),∴BM=CF;(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論