燕山大學(xué)里仁學(xué)院《智能算法應(yīng)用開發(fā)》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)
燕山大學(xué)里仁學(xué)院《智能算法應(yīng)用開發(fā)》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)
燕山大學(xué)里仁學(xué)院《智能算法應(yīng)用開發(fā)》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)
燕山大學(xué)里仁學(xué)院《智能算法應(yīng)用開發(fā)》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績(jī)按零分記。…………密………………封………………線…………第1頁(yè),共1頁(yè)燕山大學(xué)里仁學(xué)院《智能算法應(yīng)用開發(fā)》

2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的醫(yī)療應(yīng)用中,例如疾病預(yù)測(cè)和診斷輔助,假設(shè)需要確保模型的結(jié)果具有可解釋性和臨床可信賴性。以下哪種方法能夠增加模型的可信度?()A.與醫(yī)生的經(jīng)驗(yàn)和專業(yè)知識(shí)結(jié)合進(jìn)行驗(yàn)證B.只依靠模型的輸出,不進(jìn)行額外驗(yàn)證C.隱藏模型的內(nèi)部工作原理,避免質(zhì)疑D.不考慮臨床實(shí)際情況,追求高準(zhǔn)確率2、在人工智能領(lǐng)域,機(jī)器學(xué)習(xí)是重要的分支之一。假設(shè)一個(gè)醫(yī)療診斷系統(tǒng)需要通過(guò)大量的病例數(shù)據(jù)來(lái)預(yù)測(cè)疾病,以下關(guān)于機(jī)器學(xué)習(xí)在該場(chǎng)景中的應(yīng)用描述,哪一項(xiàng)是不準(zhǔn)確的?()A.監(jiān)督學(xué)習(xí)可以利用有標(biāo)記的病例數(shù)據(jù)訓(xùn)練模型,以進(jìn)行疾病預(yù)測(cè)B.無(wú)監(jiān)督學(xué)習(xí)能夠發(fā)現(xiàn)病例數(shù)據(jù)中的隱藏模式和結(jié)構(gòu),輔助診斷C.強(qiáng)化學(xué)習(xí)可以通過(guò)與環(huán)境的交互和獎(jiǎng)勵(lì)機(jī)制,優(yōu)化診斷策略D.機(jī)器學(xué)習(xí)在醫(yī)療診斷中完全可以替代醫(yī)生的經(jīng)驗(yàn)和判斷,不需要人工干預(yù)3、在人工智能的優(yōu)化算法中,隨機(jī)梯度下降(SGD)是常用的方法之一。假設(shè)在訓(xùn)練一個(gè)深度學(xué)習(xí)模型時(shí),發(fā)現(xiàn)模型收斂速度較慢。以下哪種改進(jìn)的SGD變種或優(yōu)化策略能夠加快模型的收斂速度,同時(shí)避免陷入局部最優(yōu)解?()A.AdagradB.AdadeltaC.RMSPropD.以上策略結(jié)合使用4、在人工智能的發(fā)展歷程中,深度學(xué)習(xí)技術(shù)的出現(xiàn)帶來(lái)了重大突破。假設(shè)我們正在研究圖像識(shí)別任務(wù),需要對(duì)大量的圖像數(shù)據(jù)進(jìn)行訓(xùn)練,以識(shí)別不同的物體和場(chǎng)景。深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)(CNN)在處理圖像數(shù)據(jù)時(shí)具有獨(dú)特的優(yōu)勢(shì)。那么,以下關(guān)于卷積神經(jīng)網(wǎng)絡(luò)的描述,哪一項(xiàng)是不正確的?()A.能夠自動(dòng)提取圖像的特征,減少了人工特征工程的工作量B.可以處理任意大小的圖像輸入,無(wú)需對(duì)圖像進(jìn)行預(yù)處理C.其訓(xùn)練過(guò)程需要大量的計(jì)算資源和時(shí)間D.對(duì)于復(fù)雜的圖像分類任務(wù),準(zhǔn)確率通常高于傳統(tǒng)機(jī)器學(xué)習(xí)算法5、假設(shè)要開發(fā)一個(gè)能夠在虛擬環(huán)境中進(jìn)行自主探索和學(xué)習(xí)的人工智能體,例如在游戲中不斷提升能力,以下哪種學(xué)習(xí)機(jī)制和策略可能是關(guān)鍵的?()A.無(wú)監(jiān)督學(xué)習(xí)B.有監(jiān)督學(xué)習(xí)C.強(qiáng)化學(xué)習(xí)D.以上都是6、在一個(gè)利用人工智能進(jìn)行智能安防的系統(tǒng)中,例如識(shí)別監(jiān)控視頻中的異常行為或可疑人員,以下哪種技術(shù)可能對(duì)于實(shí)時(shí)處理和準(zhǔn)確識(shí)別起到重要作用?()A.快速目標(biāo)檢測(cè)算法B.高效的特征提取方法C.分布式計(jì)算框架D.以上都是7、人工智能在工業(yè)生產(chǎn)中的質(zhì)量檢測(cè)環(huán)節(jié)具有應(yīng)用價(jià)值。假設(shè)一個(gè)工廠要利用人工智能檢測(cè)產(chǎn)品缺陷,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.通過(guò)圖像分析和機(jī)器學(xué)習(xí)算法,自動(dòng)識(shí)別產(chǎn)品表面的缺陷B.可以對(duì)大量的檢測(cè)數(shù)據(jù)進(jìn)行學(xué)習(xí),不斷提高缺陷檢測(cè)的準(zhǔn)確率C.人工智能檢測(cè)系統(tǒng)能夠完全取代人工檢測(cè),不需要人工復(fù)檢D.結(jié)合深度學(xué)習(xí)模型和傳統(tǒng)圖像處理技術(shù),提高檢測(cè)的可靠性8、在人工智能的研究中,可解釋性是一個(gè)重要的問(wèn)題。假設(shè)我們訓(xùn)練了一個(gè)復(fù)雜的深度學(xué)習(xí)模型用于醫(yī)療診斷,但是其決策過(guò)程難以理解。那么,以下關(guān)于模型可解釋性的說(shuō)法,哪一項(xiàng)是不正確的?()A.可解釋性對(duì)于建立用戶信任至關(guān)重要B.一些可視化技術(shù)可以幫助理解模型的內(nèi)部工作機(jī)制C.為了追求高精度,模型的可解釋性可以被犧牲D.可解釋性有助于發(fā)現(xiàn)模型可能存在的偏差和錯(cuò)誤9、人工智能中的無(wú)人駕駛技術(shù)面臨著眾多技術(shù)和法律挑戰(zhàn)。假設(shè)我們?cè)谟懻摕o(wú)人駕駛汽車的責(zé)任歸屬問(wèn)題,以下關(guān)于無(wú)人駕駛責(zé)任的說(shuō)法,哪一項(xiàng)是不正確的?()A.事故責(zé)任的判定應(yīng)該綜合考慮多種因素B.完全由無(wú)人駕駛汽車的制造商承擔(dān)責(zé)任C.法律法規(guī)需要隨著技術(shù)發(fā)展不斷完善D.乘客在某些情況下也可能承擔(dān)一定責(zé)任10、在人工智能的聯(lián)邦學(xué)習(xí)中,假設(shè)多個(gè)參與方需要在保護(hù)數(shù)據(jù)隱私的前提下共同訓(xùn)練一個(gè)模型。以下哪種技術(shù)或機(jī)制能夠確保數(shù)據(jù)的安全性和隱私性?()A.加密技術(shù),對(duì)數(shù)據(jù)和模型參數(shù)進(jìn)行加密傳輸和計(jì)算B.數(shù)據(jù)匿名化,去除數(shù)據(jù)中的敏感信息C.建立可信的第三方機(jī)構(gòu)進(jìn)行數(shù)據(jù)管理D.不采取任何措施,直接共享原始數(shù)據(jù)11、圖像識(shí)別是人工智能的常見(jiàn)應(yīng)用之一。假設(shè)要開發(fā)一個(gè)能夠準(zhǔn)確識(shí)別各種動(dòng)物的圖像識(shí)別系統(tǒng),以下關(guān)于圖像識(shí)別技術(shù)的描述,正確的是:()A.僅僅依靠像素級(jí)的特征提取就能實(shí)現(xiàn)高精度的圖像識(shí)別,無(wú)需考慮對(duì)象的形狀和結(jié)構(gòu)B.深度學(xué)習(xí)模型在圖像識(shí)別中總是能夠自動(dòng)學(xué)習(xí)到最有效的特征,無(wú)需人工干預(yù)特征設(shè)計(jì)C.對(duì)于復(fù)雜的圖像場(chǎng)景,傳統(tǒng)的圖像識(shí)別方法比基于深度學(xué)習(xí)的方法更具優(yōu)勢(shì)D.圖像識(shí)別系統(tǒng)的性能不受圖像質(zhì)量、光照條件和拍攝角度等因素的影響12、對(duì)于一個(gè)智能聊天機(jī)器人,需要理解用戶輸入的自然語(yǔ)言并生成合理的回復(fù)。假設(shè)用戶提出了一個(gè)復(fù)雜且含義模糊的問(wèn)題,聊天機(jī)器人要準(zhǔn)確理解用戶的意圖并提供有用的回答。以下哪種技術(shù)或方法對(duì)于提高聊天機(jī)器人的理解和生成能力是關(guān)鍵的?()A.構(gòu)建大規(guī)模的語(yǔ)料庫(kù),通過(guò)匹配來(lái)生成回復(fù)B.運(yùn)用深度學(xué)習(xí)模型,如Transformer架構(gòu)進(jìn)行訓(xùn)練C.基于模板的回復(fù)生成,限制回復(fù)的多樣性D.不考慮上下文,只根據(jù)問(wèn)題的關(guān)鍵詞生成回復(fù)13、在人工智能的強(qiáng)化學(xué)習(xí)應(yīng)用中,比如訓(xùn)練一個(gè)智能體在游戲中獲得高分,以下哪個(gè)因素對(duì)于學(xué)習(xí)效果和收斂速度可能具有重要影響?()A.獎(jiǎng)勵(lì)函數(shù)的設(shè)計(jì)B.策略網(wǎng)絡(luò)的架構(gòu)C.環(huán)境的復(fù)雜度D.以上都是14、在人工智能的圖像分割任務(wù)中,需要將圖像劃分成不同的區(qū)域。假設(shè)要對(duì)醫(yī)學(xué)影像中的病變區(qū)域進(jìn)行分割,以下關(guān)于圖像分割技術(shù)的描述,正確的是:()A.傳統(tǒng)的圖像分割方法在處理復(fù)雜的醫(yī)學(xué)影像時(shí)效果總是優(yōu)于深度學(xué)習(xí)方法B.深度學(xué)習(xí)中的全卷積神經(jīng)網(wǎng)絡(luò)(FCN)在醫(yī)學(xué)圖像分割中能夠自動(dòng)學(xué)習(xí)特征,具有很大的潛力C.圖像分割的結(jié)果只取決于所使用的算法,與圖像的質(zhì)量和分辨率無(wú)關(guān)D.圖像分割技術(shù)在醫(yī)學(xué)領(lǐng)域的應(yīng)用已經(jīng)非常成熟,不需要進(jìn)一步的研究和改進(jìn)15、人工智能在農(nóng)業(yè)領(lǐng)域的精準(zhǔn)種植方面有潛在應(yīng)用。假設(shè)利用人工智能監(jiān)測(cè)農(nóng)作物的生長(zhǎng)狀況,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.通過(guò)圖像識(shí)別和傳感器數(shù)據(jù),實(shí)時(shí)獲取農(nóng)作物的生長(zhǎng)參數(shù)B.基于數(shù)據(jù)分析預(yù)測(cè)病蟲害的發(fā)生,及時(shí)采取防治措施C.人工智能可以完全自主地進(jìn)行農(nóng)作物的種植和管理,無(wú)需人工干預(yù)D.結(jié)合氣象數(shù)據(jù)優(yōu)化灌溉和施肥方案,提高資源利用效率16、當(dāng)利用人工智能進(jìn)行輿情監(jiān)測(cè)和分析,及時(shí)了解公眾對(duì)某一事件或話題的看法和情緒傾向,以下哪種數(shù)據(jù)來(lái)源和分析手段可能是有效的?()A.社交媒體數(shù)據(jù)和情感分析B.新聞評(píng)論數(shù)據(jù)和主題建模C.網(wǎng)絡(luò)搜索數(shù)據(jù)和趨勢(shì)預(yù)測(cè)D.以上都是17、在人工智能的倫理和社會(huì)影響方面,存在許多值得關(guān)注的問(wèn)題。假設(shè)人工智能系統(tǒng)在招聘過(guò)程中被用于篩選候選人,以下關(guān)于這種應(yīng)用的說(shuō)法,哪一項(xiàng)是需要謹(jǐn)慎考慮的?()A.可以完全避免人為的偏見(jiàn)和不公平B.可能會(huì)因?yàn)閿?shù)據(jù)偏差導(dǎo)致某些群體受到不公平對(duì)待C.其決策結(jié)果應(yīng)該無(wú)條件被接受和執(zhí)行D.不需要對(duì)其進(jìn)行監(jiān)管和評(píng)估18、強(qiáng)化學(xué)習(xí)是人工智能的一個(gè)重要分支,常用于訓(xùn)練智能體做出最優(yōu)決策。假設(shè)一個(gè)智能體在一個(gè)復(fù)雜的環(huán)境中學(xué)習(xí),以下關(guān)于強(qiáng)化學(xué)習(xí)的描述,正確的是:()A.智能體通過(guò)隨機(jī)嘗試不同的動(dòng)作來(lái)學(xué)習(xí),不需要任何獎(jiǎng)勵(lì)反饋B.獎(jiǎng)勵(lì)函數(shù)的設(shè)計(jì)對(duì)智能體的學(xué)習(xí)效果沒(méi)有影響,只要有足夠的訓(xùn)練時(shí)間就能學(xué)會(huì)最優(yōu)策略C.強(qiáng)化學(xué)習(xí)算法能夠保證智能體在有限的時(shí)間內(nèi)找到絕對(duì)最優(yōu)的決策策略D.智能體在學(xué)習(xí)過(guò)程中會(huì)不斷調(diào)整策略以最大化累積獎(jiǎng)勵(lì)19、假設(shè)在一個(gè)智能工廠的質(zhì)量檢測(cè)環(huán)節(jié),需要利用人工智能技術(shù)自動(dòng)檢測(cè)產(chǎn)品的缺陷,以下哪種圖像分析技術(shù)和模型可能會(huì)被采用?()A.傳統(tǒng)的圖像處理算法B.基于深度學(xué)習(xí)的目標(biāo)檢測(cè)C.基于特征工程的分類模型D.以上都是20、人工智能在教育領(lǐng)域的應(yīng)用逐漸增多,例如個(gè)性化學(xué)習(xí)、智能輔導(dǎo)系統(tǒng)等。以下關(guān)于人工智能在教育領(lǐng)域應(yīng)用的說(shuō)法,錯(cuò)誤的是()A.可以根據(jù)學(xué)生的學(xué)習(xí)情況和特點(diǎn),為其提供個(gè)性化的學(xué)習(xí)路徑和資源推薦B.能夠?qū)崟r(shí)監(jiān)測(cè)學(xué)生的學(xué)習(xí)狀態(tài),及時(shí)給予反饋和指導(dǎo)C.人工智能在教育領(lǐng)域的應(yīng)用可以完全取代教師的作用,實(shí)現(xiàn)教育的自動(dòng)化D.有助于提高教育的效率和質(zhì)量,但也需要關(guān)注學(xué)生的隱私和數(shù)據(jù)安全問(wèn)題21、在人工智能的醫(yī)療影像診斷中,深度學(xué)習(xí)模型可以輔助醫(yī)生發(fā)現(xiàn)病變。假設(shè)我們要利用深度學(xué)習(xí)模型診斷肺部CT影像中的結(jié)節(jié),以下關(guān)于模型訓(xùn)練的說(shuō)法,哪一項(xiàng)是正確的?()A.可以使用少量標(biāo)注數(shù)據(jù)獲得準(zhǔn)確的診斷結(jié)果B.模型的泛化能力對(duì)于不同醫(yī)院的數(shù)據(jù)不重要C.數(shù)據(jù)增強(qiáng)技術(shù)可以提高模型的魯棒性D.不需要對(duì)模型進(jìn)行驗(yàn)證和評(píng)估22、人工智能在自動(dòng)駕駛領(lǐng)域有重要的應(yīng)用。假設(shè)一輛自動(dòng)駕駛汽車在行駛過(guò)程中需要做出決策,以下關(guān)于自動(dòng)駕駛中的人工智能決策的描述,正確的是:()A.自動(dòng)駕駛汽車的決策完全依賴于預(yù)先設(shè)定的規(guī)則和算法,不具備自主學(xué)習(xí)和適應(yīng)能力B.復(fù)雜的交通環(huán)境和意外情況不會(huì)對(duì)自動(dòng)駕駛汽車的決策造成困難,因?yàn)槠渚哂型昝赖母兄皖A(yù)測(cè)能力C.自動(dòng)駕駛汽車在決策時(shí)需要綜合考慮多種因素,如交通規(guī)則、行人行為和車輛狀態(tài)等D.人類駕駛員的干預(yù)對(duì)自動(dòng)駕駛汽車的決策沒(méi)有任何幫助,反而可能導(dǎo)致系統(tǒng)混亂23、在人工智能的智能推薦系統(tǒng)中,冷啟動(dòng)問(wèn)題是指在新用戶或新物品加入時(shí)缺乏足夠的歷史數(shù)據(jù)進(jìn)行準(zhǔn)確推薦。假設(shè)要解決一個(gè)新上線電商平臺(tái)的冷啟動(dòng)問(wèn)題,以下哪種策略最為有效?()A.基于內(nèi)容的推薦B.基于熱門商品的推薦C.基于用戶社交關(guān)系的推薦D.以上策略結(jié)合使用24、人工智能中的人工神經(jīng)網(wǎng)絡(luò)具有強(qiáng)大的學(xué)習(xí)能力。假設(shè)我們正在訓(xùn)練一個(gè)多層神經(jīng)網(wǎng)絡(luò)來(lái)預(yù)測(cè)股票價(jià)格的走勢(shì)。如果網(wǎng)絡(luò)的訓(xùn)練數(shù)據(jù)包含了過(guò)多的噪聲,會(huì)產(chǎn)生什么后果?()A.網(wǎng)絡(luò)的泛化能力增強(qiáng)B.網(wǎng)絡(luò)的訓(xùn)練速度加快C.網(wǎng)絡(luò)可能對(duì)新的數(shù)據(jù)預(yù)測(cè)不準(zhǔn)確D.網(wǎng)絡(luò)的結(jié)構(gòu)變得更加復(fù)雜25、當(dāng)利用人工智能進(jìn)行語(yǔ)音合成,使合成的語(yǔ)音聽起來(lái)更加自然和富有情感,以下哪種方法可能是重點(diǎn)研究和改進(jìn)的方向?()A.改進(jìn)聲學(xué)模型B.優(yōu)化韻律模型C.提升文本分析精度D.以上都是二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)簡(jiǎn)述人工智能在供應(yīng)鏈風(fēng)險(xiǎn)管理和彈性建設(shè)中的作用。2、(本題5分)簡(jiǎn)述人工智能在考古學(xué)中的應(yīng)用。3、(本題5分)談?wù)勅斯ぶ悄茉谥圃鞓I(yè)中的應(yīng)用。4、(本題5分)談?wù)勅斯ぶ悄茉陔娚绦袠I(yè)的應(yīng)用實(shí)例。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)以某智能檔案管理系統(tǒng)為例,探討人工智能在文件分類和檢索中的應(yīng)用。2、(本題5分)考察一個(gè)基于人工智能的智能民間藝術(shù)作品市場(chǎng)需求分析系統(tǒng),討論其如何分析市場(chǎng)對(duì)民間藝術(shù)作品的需求。3、(本題5分)分析一個(gè)基于人工智能的建筑能耗優(yōu)化方案,探討其節(jié)能效果和實(shí)施難度。4、(本題5分)研究一個(gè)基于人工智能的智能物流調(diào)度系統(tǒng),探討其如何優(yōu)化運(yùn)輸路線和資源分配。5、(本題5分)分析一個(gè)利用人工智能進(jìn)行民間藝術(shù)文化交流活動(dòng)策劃的實(shí)例,討論其活動(dòng)形式和交流效果。四、操作題(本大題共3個(gè)小題,共30分)1、(本題10分)利用Python的Py

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論