蘇州工藝美術(shù)職業(yè)技術(shù)學(xué)院《模式識(shí)別與機(jī)器學(xué)習(xí)》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
蘇州工藝美術(shù)職業(yè)技術(shù)學(xué)院《模式識(shí)別與機(jī)器學(xué)習(xí)》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
蘇州工藝美術(shù)職業(yè)技術(shù)學(xué)院《模式識(shí)別與機(jī)器學(xué)習(xí)》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
蘇州工藝美術(shù)職業(yè)技術(shù)學(xué)院《模式識(shí)別與機(jī)器學(xué)習(xí)》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
蘇州工藝美術(shù)職業(yè)技術(shù)學(xué)院《模式識(shí)別與機(jī)器學(xué)習(xí)》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無效密自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁蘇州工藝美術(shù)職業(yè)技術(shù)學(xué)院

《模式識(shí)別與機(jī)器學(xué)習(xí)》2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的藝術(shù)創(chuàng)作評(píng)價(jià)中,例如評(píng)價(jià)一幅由人工智能生成的繪畫作品,以下哪種標(biāo)準(zhǔn)和方法可能是具有挑戰(zhàn)性的?()A.創(chuàng)新性和獨(dú)特性B.技術(shù)技巧和表現(xiàn)力C.情感傳達(dá)和審美價(jià)值D.以上都是2、在人工智能的推薦系統(tǒng)中,例如為用戶推薦電影、音樂或商品,需要考慮用戶的歷史行為、偏好和當(dāng)前的情境信息。假設(shè)一個(gè)用戶的興趣偏好經(jīng)常變化,以下哪種方法能夠更好地適應(yīng)這種動(dòng)態(tài)的用戶偏好?()A.基于協(xié)同過濾的推薦,依賴其他用戶的行為B.基于內(nèi)容的推薦,分析物品的特征C.混合推薦,結(jié)合多種推薦方法D.始終使用固定的推薦策略,不進(jìn)行調(diào)整3、在人工智能的文本摘要生成中,假設(shè)需要從長(zhǎng)篇文章中提取關(guān)鍵信息并生成簡(jiǎn)潔準(zhǔn)確的摘要。以下哪種方法能夠更好地捕捉文章的主旨和重點(diǎn)?()A.基于注意力機(jī)制的模型,關(guān)注重要的文本部分B.按照文章的開頭和結(jié)尾提取關(guān)鍵語句C.隨機(jī)選擇文章中的段落作為摘要D.不進(jìn)行任何分析,直接輸出原文的前幾段4、在人工智能的研究中,模型的壓縮和量化技術(shù)可以減少模型的參數(shù)和計(jì)算量。以下關(guān)于模型壓縮和量化的敘述,不準(zhǔn)確的是()A.可以通過剪枝、量化和低秩分解等方法實(shí)現(xiàn)模型壓縮B.模型壓縮和量化會(huì)導(dǎo)致模型性能的一定損失,但可以在可接受范圍內(nèi)提高計(jì)算效率C.模型壓縮和量化技術(shù)只適用于小型模型,對(duì)于大型復(fù)雜模型效果不佳D.這些技術(shù)對(duì)于在資源受限的設(shè)備上部署人工智能模型具有重要意義5、人工智能在教育領(lǐng)域有著創(chuàng)新應(yīng)用。假設(shè)要開發(fā)一個(gè)自適應(yīng)學(xué)習(xí)系統(tǒng),以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.根據(jù)學(xué)生的學(xué)習(xí)進(jìn)度和表現(xiàn),動(dòng)態(tài)調(diào)整學(xué)習(xí)內(nèi)容和難度B.利用情感分析技術(shù)了解學(xué)生的學(xué)習(xí)情緒,提供相應(yīng)的激勵(lì)和支持C.人工智能驅(qū)動(dòng)的教育系統(tǒng)可以完全替代教師的角色,實(shí)現(xiàn)自主學(xué)習(xí)D.結(jié)合虛擬現(xiàn)實(shí)和增強(qiáng)現(xiàn)實(shí)技術(shù),創(chuàng)造沉浸式的學(xué)習(xí)體驗(yàn)6、在人工智能的發(fā)展歷程中,機(jī)器學(xué)習(xí)算法起到了關(guān)鍵作用。假設(shè)我們要開發(fā)一個(gè)能夠預(yù)測(cè)股票價(jià)格走勢(shì)的模型,需要處理大量的歷史交易數(shù)據(jù)和財(cái)務(wù)報(bào)表等信息。以下關(guān)于選擇機(jī)器學(xué)習(xí)算法的考慮,哪一項(xiàng)是最為重要的?()A.選擇簡(jiǎn)單直觀的線性回歸算法,因?yàn)槠湟子诶斫夂徒忉孊.采用復(fù)雜的深度學(xué)習(xí)算法,如卷積神經(jīng)網(wǎng)絡(luò),以捕捉數(shù)據(jù)中的復(fù)雜模式C.運(yùn)用決策樹算法,其能夠生成易于理解的規(guī)則D.隨機(jī)選擇一種算法,碰碰運(yùn)氣7、人工智能在醫(yī)療影像診斷中的輔助作用越來越受到重視。假設(shè)一個(gè)醫(yī)生正在借助人工智能系統(tǒng)輔助診斷X光片,以下關(guān)于醫(yī)療影像診斷中人工智能的描述,正確的是:()A.人工智能系統(tǒng)的診斷結(jié)果可以完全替代醫(yī)生的判斷,醫(yī)生無需再進(jìn)行分析B.醫(yī)生應(yīng)該將人工智能系統(tǒng)的診斷結(jié)果作為唯一參考,忽略自己的臨床經(jīng)驗(yàn)C.人工智能系統(tǒng)可以提供輔助信息和提示,幫助醫(yī)生更準(zhǔn)確地診斷,但最終決策仍由醫(yī)生做出D.醫(yī)療影像診斷中的人工智能技術(shù)還不夠成熟,不能為醫(yī)生提供任何有價(jià)值的幫助8、人工智能在藝術(shù)創(chuàng)作領(lǐng)域也有一定的應(yīng)用。假設(shè)要使用人工智能生成音樂或繪畫作品。以下關(guān)于人工智能在藝術(shù)創(chuàng)作中的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以為藝術(shù)家提供靈感和創(chuàng)意,輔助藝術(shù)創(chuàng)作過程B.生成的作品具有獨(dú)特的風(fēng)格和創(chuàng)意,完全可以與人類藝術(shù)家的作品媲美C.人工智能藝術(shù)創(chuàng)作仍然需要人類藝術(shù)家的指導(dǎo)和審美判斷D.引發(fā)了關(guān)于藝術(shù)定義和創(chuàng)作本質(zhì)的思考和討論9、情感計(jì)算是人工智能的一個(gè)新興領(lǐng)域,旨在讓計(jì)算機(jī)理解和處理人類的情感。假設(shè)要開發(fā)一個(gè)能夠識(shí)別用戶情感狀態(tài)的系統(tǒng)。以下關(guān)于情感計(jì)算的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過分析語音、面部表情和文本等多模態(tài)信息來判斷情感B.情感計(jì)算的應(yīng)用可以包括心理咨詢、客戶服務(wù)等領(lǐng)域C.目前的情感計(jì)算技術(shù)已經(jīng)能夠準(zhǔn)確無誤地識(shí)別和理解所有復(fù)雜的人類情感D.情感模型的訓(xùn)練需要大量標(biāo)注了情感標(biāo)簽的數(shù)據(jù)10、在人工智能的模型部署階段,需要考慮許多實(shí)際問題。假設(shè)要將一個(gè)訓(xùn)練好的人工智能模型部署到移動(dòng)設(shè)備上,以下關(guān)于模型壓縮和優(yōu)化的方法,哪一項(xiàng)是不正確的?()A.采用量化技術(shù),減少模型的參數(shù)精度B.進(jìn)行模型剪枝,去除不重要的連接和神經(jīng)元C.直接將訓(xùn)練好的模型原封不動(dòng)地部署到移動(dòng)設(shè)備上,不進(jìn)行任何優(yōu)化D.使用知識(shí)蒸餾技術(shù),將復(fù)雜模型的知識(shí)遷移到較小的模型中11、當(dāng)利用人工智能進(jìn)行推薦系統(tǒng)的設(shè)計(jì),例如為用戶推薦個(gè)性化的電影或音樂,以下哪種技術(shù)可能有助于提高推薦的準(zhǔn)確性和新穎性?()A.協(xié)同過濾B.基于內(nèi)容的推薦C.混合推薦D.以上都是12、人工智能在醫(yī)療影像診斷中的應(yīng)用不斷發(fā)展。假設(shè)一個(gè)醫(yī)院要引入人工智能輔助診斷系統(tǒng)來檢測(cè)癌癥。以下關(guān)于該應(yīng)用的描述,哪一項(xiàng)是錯(cuò)誤的?()A.能夠提高診斷的準(zhǔn)確性和效率,減少漏診和誤診的情況B.可以與醫(yī)生的經(jīng)驗(yàn)和判斷相結(jié)合,提供更全面的診斷依據(jù)C.人工智能診斷系統(tǒng)可以完全取代病理醫(yī)生的工作,獨(dú)立做出診斷結(jié)論D.需要經(jīng)過嚴(yán)格的臨床試驗(yàn)和驗(yàn)證,確保其安全性和有效性13、強(qiáng)化學(xué)習(xí)是人工智能中的一種學(xué)習(xí)方法,常用于訓(xùn)練智能體在環(huán)境中做出最優(yōu)決策。假設(shè)一個(gè)機(jī)器人需要通過強(qiáng)化學(xué)習(xí)來學(xué)習(xí)如何在復(fù)雜的環(huán)境中行走而不摔倒。以下關(guān)于強(qiáng)化學(xué)習(xí)的描述,哪一項(xiàng)是不正確的?()A.智能體通過與環(huán)境進(jìn)行交互,根據(jù)獲得的獎(jiǎng)勵(lì)來調(diào)整自己的行為策略B.強(qiáng)化學(xué)習(xí)需要大量的試驗(yàn)和錯(cuò)誤來找到最優(yōu)策略,計(jì)算成本較高C.可以用于解決連續(xù)動(dòng)作空間和高維度狀態(tài)空間的問題D.強(qiáng)化學(xué)習(xí)不需要對(duì)環(huán)境有任何先驗(yàn)知識(shí),完全依靠隨機(jī)探索來學(xué)習(xí)14、在人工智能的機(jī)器人控制領(lǐng)域,假設(shè)要讓一個(gè)機(jī)器人通過學(xué)習(xí)來適應(yīng)不同的環(huán)境和任務(wù),以下關(guān)于機(jī)器人學(xué)習(xí)的描述,正確的是:()A.機(jī)器人可以通過預(yù)先編程來應(yīng)對(duì)所有可能的情況,無需學(xué)習(xí)能力B.強(qiáng)化學(xué)習(xí)是機(jī)器人學(xué)習(xí)的唯一有效方法,其他學(xué)習(xí)方法不適用C.機(jī)器人在學(xué)習(xí)過程中可以通過與環(huán)境的交互和試錯(cuò)來不斷改進(jìn)自己的行為D.機(jī)器人的學(xué)習(xí)能力受到硬件限制,無法達(dá)到與人類相似的學(xué)習(xí)效果15、在人工智能的發(fā)展中,算力是重要的支撐因素。假設(shè)要訓(xùn)練一個(gè)大型的人工智能模型,以下關(guān)于算力的描述,哪一項(xiàng)是不正確的?()A.強(qiáng)大的計(jì)算資源,如GPU集群,可以加速模型的訓(xùn)練過程B.云計(jì)算平臺(tái)可以提供靈活的算力支持,滿足不同規(guī)模的訓(xùn)練需求C.算力的提升僅僅取決于硬件的性能,與算法的優(yōu)化無關(guān)D.合理分配和利用算力資源對(duì)于提高訓(xùn)練效率和降低成本至關(guān)重要二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)簡(jiǎn)述人工智能在智能成本效益分析中的技術(shù)。2、(本題5分)簡(jiǎn)述人工智能在智能質(zhì)量檢測(cè)中的技術(shù)。3、(本題5分)簡(jiǎn)述決策樹算法的原理和應(yīng)用。4、(本題5分)說明人工智能中的模型評(píng)估指標(biāo)。三、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)使用OpenCV和深度學(xué)習(xí)模型,實(shí)現(xiàn)對(duì)工業(yè)生產(chǎn)線上的產(chǎn)品缺陷檢測(cè),如表面劃痕、尺寸偏差等。對(duì)產(chǎn)品圖像進(jìn)行實(shí)時(shí)處理和分析,及時(shí)發(fā)現(xiàn)缺陷產(chǎn)品,評(píng)估檢測(cè)系統(tǒng)的準(zhǔn)確率和檢測(cè)速度。2、(本題5分)利用Python的PyTorch庫,實(shí)現(xiàn)一個(gè)基于循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的文本生成模型。以給定的一段文本為基礎(chǔ),訓(xùn)練模型生成具有相似風(fēng)格和主題的新文本。對(duì)生成的文本進(jìn)行質(zhì)量評(píng)估和分析。3、(本題5分)運(yùn)用深度學(xué)習(xí)框架構(gòu)建一個(gè)自然語言翻譯模型,提高翻譯的準(zhǔn)確性和流暢性。4、(本題5分)利用Python中的Scikit-learn庫,實(shí)現(xiàn)高斯混合模型(GMM)對(duì)數(shù)據(jù)進(jìn)行聚類,通過調(diào)整模型參數(shù)優(yōu)化聚類效果。5、(本題5分)運(yùn)用深度學(xué)習(xí)框架構(gòu)建一個(gè)自然語言生成模型,根據(jù)給定的主題生成故事或文章。四、案例分析題(本大題共4個(gè)小題,共40分)1、(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論