




已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
高二下一常用邏輯用語1. 四種命題,(原命題、否命題、逆命題、逆否命題)(1)四種命題的關(guān)系, (2)等價(jià)關(guān)系(互為逆否命題的等價(jià)性)(a)原命題與其逆否命題同真、同假。(b)否命題與逆命題同真、同假。2. 充分條件、必要條件、充要條件(1)定義:若p成立,則q成立,即時(shí),p是q的充分條件。同時(shí)q是p的必要條件。若p成立,則q成立,且q成立,則p成立 ,即且,則p與q互為充要條件。 (2)判斷方法:(i)定義法,(ii)集合法:設(shè)使p成立的條件組成的集合是A,使q成立的條件組成的集合為B,若 則p是q的充分條件。同時(shí)q是p的必要條件。若A=B,則p與q互為充要條件。(iii)命題法:假設(shè)命題:“若p則q”。當(dāng)原命題為真時(shí),p是q的充分條件。當(dāng)其逆命題也為真時(shí),p與q互為充要條件。注意:充分條件與充分非必要條件的區(qū)別:用集合法判斷看,前者:集合A是集合B的子集;后者:集合A是集合B的真子集。3. 全稱命題、特稱命題(含有全稱量詞的命題叫全稱命題,含有存在量詞的命題叫特稱命題)(1)關(guān)系:全稱命題的否定是特稱命題,特稱命題的否定是全稱命題。(2)全稱量詞與存在量詞的否定。關(guān)鍵詞否定詞關(guān)鍵詞否定詞關(guān)鍵詞否定詞關(guān)鍵詞否定詞都是不都是至少一個(gè)一個(gè)都沒有至多一個(gè)至少兩個(gè)屬于不屬于4. 邏輯連結(jié)詞“或”,“且”,“非”。(1)構(gòu)造復(fù)合命題的方式:簡單命題+邏輯連結(jié)詞(或、且、非)+簡單命題。(2)復(fù)合命題的真假判斷:pq非pp或qp且q真真假真真真假假真假假真真真假假假真假假注意:“命題的否定”與“否命題”是兩個(gè)不同的概念:前者只否定結(jié)論,后者結(jié)論與條件共同否定。 二圓錐曲線一、橢圓方程.1. 橢圓方程的第一定義:橢圓的標(biāo)準(zhǔn)方程:i. 中心在原點(diǎn),焦點(diǎn)在x軸上:. ii. 中心在原點(diǎn),焦點(diǎn)在軸上:. 一般方程:.橢圓的標(biāo)準(zhǔn)方程:的參數(shù)方程為(一象限應(yīng)是屬于).頂點(diǎn):或.軸:對稱軸:x軸,軸;長軸長,短軸長.焦點(diǎn):或.焦距:.準(zhǔn)線:或.離心率:.焦點(diǎn)半徑:i. 設(shè)為橢圓上的一點(diǎn),為左、右焦點(diǎn),則ii.設(shè)為橢圓上的一點(diǎn),為上、下焦點(diǎn),則由橢圓第二定義可知:歸結(jié)起來為“左加右減”.注意:橢圓參數(shù)方程的推導(dǎo):得方程的軌跡為橢圓. 通徑:垂直于x軸且過焦點(diǎn)的弦叫做通經(jīng).坐標(biāo):和共離心率的橢圓系的方程:橢圓的離心率是,方程是大于0的參數(shù),的離心率也是 我們稱此方程為共離心率的橢圓系方程.若P是橢圓:上的點(diǎn).為焦點(diǎn),若,則的面積為(用余弦定理與可得). 若是雙曲線,則面積為.二、雙曲線方程.1. 雙曲線的第一定義:雙曲線標(biāo)準(zhǔn)方程:. 一般方程:.i. 焦點(diǎn)在x軸上:頂點(diǎn): 焦點(diǎn): 準(zhǔn)線方程 漸近線方程:或ii. 焦點(diǎn)在軸上:頂點(diǎn):. 焦點(diǎn):. 準(zhǔn)線方程:. 漸近線方程:或,參數(shù)方程:或 .軸為對稱軸,實(shí)軸長為2a, 虛軸長為2b,焦距2c. 離心率. 準(zhǔn)線距(兩準(zhǔn)線的距離);通徑. 參數(shù)關(guān)系. 焦點(diǎn)半徑公式:對于雙曲線方程(分別為雙曲線的左、右焦點(diǎn)或分別為雙曲線的上下焦點(diǎn))“長加短減”原則:(與橢圓焦半徑不同,橢圓焦半徑要帶符號計(jì)算,而雙曲線不帶符號) 構(gòu)成滿足 等軸雙曲線:雙曲線稱為等軸雙曲線,其漸近線方程為,離心率.共軛雙曲線:以已知雙曲線的虛軸為實(shí)軸,實(shí)軸為虛軸的雙曲線,叫做已知雙曲線的共軛雙曲線.與互為共軛雙曲線,它們具有共同的漸近線:.共漸近線的雙曲線系方程:的漸近線方程為如果雙曲線的漸近線為時(shí),它的雙曲線方程可設(shè)為.例如:若雙曲線一條漸近線為且過,求雙曲線的方程?解:令雙曲線的方程為:,代入得.直線與雙曲線的位置關(guān)系:區(qū)域:無切線,2條與漸近線平行的直線,合計(jì)2條;區(qū)域:即定點(diǎn)在雙曲線上,1條切線,2條與漸近線平行的直線,合計(jì)3條;區(qū)域:2條切線,2條與漸近線平行的直線,合計(jì)4條;區(qū)域:即定點(diǎn)在漸近線上且非原點(diǎn),1條切線,1條與漸近線平行的直線,合計(jì)2條;區(qū)域:即過原點(diǎn),無切線,無與漸近線平行的直線.小結(jié):1.過定點(diǎn)作直線與雙曲線有且僅有一個(gè)交點(diǎn),可以作出的直線數(shù)目可能有0、2、3、4條.2.若直線與雙曲線一支有交點(diǎn),交點(diǎn)為二個(gè)時(shí),求確定直線的斜率可用代入法與漸近線求交和兩根之和與兩根之積同號.若P在雙曲線,則常用結(jié)論1:從雙曲線一個(gè)焦點(diǎn)到另一條漸近線的距離等于b.2:P到焦點(diǎn)的距離為m = n,則P到兩準(zhǔn)線的距離比為mn. 簡證: = .三、拋物線方程.3. 設(shè),拋物線的標(biāo)準(zhǔn)方程、類型及其幾何性質(zhì):圖形焦點(diǎn)準(zhǔn)線范圍對稱軸軸軸頂點(diǎn) (0,0)離心率焦點(diǎn)注:頂點(diǎn).則焦點(diǎn)半徑;則焦點(diǎn)半徑為.通徑為2p,這是過焦點(diǎn)的所有弦中最短的.(或)的參數(shù)方程為(或)(為參數(shù)).四、圓錐曲線的統(tǒng)一定義.4. 圓錐曲線的統(tǒng)一定義:平面內(nèi)到定點(diǎn)F和定直線的距離之比為常數(shù)的點(diǎn)的軌跡.當(dāng)時(shí),軌跡為橢圓;當(dāng)時(shí),軌跡為拋物線;當(dāng)時(shí),軌跡為雙曲線;當(dāng)時(shí),軌跡為圓(,當(dāng)時(shí)).5. 圓錐曲線方程具有對稱性. 例如:橢圓的標(biāo)準(zhǔn)方程對原點(diǎn)的一條直線與雙曲線的交點(diǎn)是關(guān)于原點(diǎn)對稱的.因?yàn)榫哂袑ΨQ性,所以欲證AB=CD, 即證AD與BC的中點(diǎn)重合即可.注:橢圓、雙曲線、拋物線的標(biāo)準(zhǔn)方程與幾何性質(zhì)橢圓雙曲線拋物線定義1到兩定點(diǎn)F1,F2的距離之和為定值2a(2a|F1F2|)的點(diǎn)的軌跡1到兩定點(diǎn)F1,F2的距離之差的絕對值為定值2a(02a|F1F2|)的點(diǎn)的軌跡2與定點(diǎn)和直線的距離之比為定值e的點(diǎn)的軌跡.(0e1)與定點(diǎn)和直線的距離相等的點(diǎn)的軌跡.方程標(biāo)準(zhǔn)方程(0)(a0,b0)y2=2px參數(shù)方程(t為參數(shù))范圍axa,byb|x| a,yRx0中心原點(diǎn)O(0,0)原點(diǎn)O(0,0)頂點(diǎn)(a,0), (a,0), (0,b) , (0,b)(a,0), (a,0)(0,0)對稱軸x軸,y軸;長軸長2a,短軸長2bx軸,y軸;實(shí)軸長2a, 虛軸長2b.x軸焦點(diǎn)F1(c,0), F2(c,0)F1(c,0), F2(c,0)焦距2c (c=)2c (c=)離心率e=1準(zhǔn)線x=x=漸近線y=x焦半徑通徑2p焦參數(shù)P1. 方程y2=ax與x2=ay的焦點(diǎn)坐標(biāo)及準(zhǔn)線方程.2. 共漸近線的雙曲線系方程.四導(dǎo)數(shù)及其應(yīng)用1、函數(shù)從到的平均變化率: 2、導(dǎo)數(shù)定義:在點(diǎn)處的導(dǎo)數(shù)記作;3、函數(shù)在點(diǎn)處的導(dǎo)數(shù)的幾何意義是曲線在點(diǎn)處的切線的斜率 4、常見函數(shù)的導(dǎo)數(shù)公式:; ; ;5、導(dǎo)數(shù)運(yùn)算法則: ; ;6、在某個(gè)區(qū)間內(nèi),若,則函數(shù)在這個(gè)區(qū)間內(nèi)單調(diào)遞增;若,則函數(shù)在這個(gè)區(qū)間內(nèi)單調(diào)遞減7、求解函數(shù)單調(diào)區(qū)間的步驟:(1)確定函數(shù)的定義域; (2)求導(dǎo)數(shù);(3)解不等式,解集在定義域內(nèi)的部分為增區(qū)間;(4)解不等式,解集在定義域內(nèi)的部分為減區(qū)間8、求函數(shù)的極值的方法是:解方程當(dāng)時(shí):如果在附近的左側(cè),右側(cè),那么是極大值;如果在附近的左側(cè),右側(cè),那么是極小值9、求解函數(shù)極值的一般步驟:(1)確定函數(shù)的定義域 (2)求函數(shù)的導(dǎo)數(shù)f(x)(3)求方程f(x)=0的根(4)用方程f(x)=0的根,順次將函數(shù)的定義域分成若干個(gè)開區(qū)間,并列成表格(5)由f(x)在方程f(x)=0的根左右的符號,來判斷f(x)在這個(gè)根處取極值的情況10、求函數(shù)在上的最大值與最小值的步驟是:求函數(shù)在內(nèi)的極值;將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的一個(gè)是最大值,最小的一個(gè)是最小值五數(shù)系的擴(kuò)充和復(fù)數(shù)概念和公式總結(jié)1.虛數(shù)單位:它的平方等于-1,即 2. 與1的關(guān)系: 就是1的一個(gè)平方根,即方程x2=1的一個(gè)根,方程x2=1的另一個(gè)根是3. 的周期性:4n+1=i, 4n+2=-1, 4n+3=-i, 4n=14.復(fù)數(shù)的定義:形如的數(shù)叫復(fù)數(shù),叫復(fù)數(shù)的實(shí)部,叫復(fù)數(shù)的虛部全體復(fù)數(shù)所成的集合叫做復(fù)數(shù)集,用字母C表示復(fù)數(shù)通常用字母z表示,即5. 復(fù)數(shù)與實(shí)數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:對于復(fù)數(shù),當(dāng)且僅當(dāng)b=0時(shí),復(fù)數(shù)a+bi(a、bR)是實(shí)數(shù)a;當(dāng)b0時(shí),復(fù)數(shù)z=a+bi叫做虛數(shù);當(dāng)a=0且b0時(shí),z=bi叫做純虛數(shù);a0且b0時(shí),z=bi叫做非純虛數(shù)的純虛數(shù);當(dāng)且僅當(dāng)a=b=0時(shí),z就是實(shí)數(shù)0.5.復(fù)數(shù)集與其它數(shù)集之間的關(guān)系:NZQRC.6. 兩個(gè)復(fù)數(shù)相等的定義:如果兩個(gè)復(fù)數(shù)的實(shí)部和虛部分別相等,那么我們就說這兩個(gè)復(fù)數(shù)相等如果a,b,c,dR,那么a+bi=c+dia=c,b=d一般地,兩個(gè)復(fù)數(shù)只能說相等或不相等,而不能比較大小.如果兩個(gè)復(fù)數(shù)都是實(shí)數(shù),就可以比較大小當(dāng)兩個(gè)復(fù)數(shù)不全是實(shí)數(shù)時(shí)不能比較大小7. 復(fù)平面、實(shí)軸、虛軸:點(diǎn)Z的橫坐標(biāo)是a,縱坐標(biāo)是b,復(fù)數(shù)z=a+bi(a、bR)可用點(diǎn)Z(a,b)表示,這個(gè)建立了直角坐標(biāo)系來表示復(fù)數(shù)的平面叫做復(fù)平面, x軸叫做實(shí)軸,y軸叫做虛軸實(shí)軸上的點(diǎn)都表示實(shí)數(shù) (1)實(shí)軸上的點(diǎn)都表示實(shí)數(shù) (2)虛軸上的點(diǎn)都表示純虛數(shù)(3)原點(diǎn)對應(yīng)的有序?qū)崝?shù)對為(0,0)設(shè)z1=a+bi,z2=c+di(a、b、c、dR)是任意兩個(gè)復(fù)數(shù),8復(fù)數(shù)z1與z2的加法運(yùn)算律:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i.9.復(fù)數(shù)z1與z2的減法運(yùn)算律:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i.10.復(fù)數(shù)z1與z2的乘法運(yùn)算律:z1z2= (a+bi)(c+di)=(acbd)+(bc+ad)i.11.復(fù)數(shù)z1與z2的除法運(yùn)算律:z1z2 =(a+bi)(c+di)=(分母實(shí)數(shù)化)12.共軛復(fù)數(shù):當(dāng)兩個(gè)復(fù)數(shù)的實(shí)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公益助學(xué)資金管理制度
- 云計(jì)算與網(wǎng)絡(luò)服務(wù)的整合策略試題及答案
- 公司禮品收發(fā)管理制度
- 信息系統(tǒng)監(jiān)理師考試重點(diǎn)復(fù)習(xí)試題及答案
- 養(yǎng)老機(jī)構(gòu)資金管理制度
- 幼兒園音體室管理制度
- 信息系統(tǒng)監(jiān)理師備考經(jīng)驗(yàn)交流試題及答案
- 小學(xué)紀(jì)律班級管理制度
- 平安工地監(jiān)理管理制度
- 醫(yī)院護(hù)理效期管理制度
- 地表水水質(zhì)自動監(jiān)測站運(yùn)行維護(hù)技術(shù)規(guī)范
- 健康證申請證明(通用)
- 中國中化集團(tuán)收購加拿大鉀肥公司的商務(wù)談判計(jì)劃書
- GB∕T 10054.1-2021 貨用施工升降機(jī) 第1部分:運(yùn)載裝置可進(jìn)人的升降機(jī)
- 天然氣管線施工無損檢測方案
- 生物安全委員會及組織架構(gòu)
- 設(shè)計(jì)學(xué)概論設(shè)計(jì)批評課件
- 員工領(lǐng)用勞保用品表格
- 中油即時(shí)通信安裝手冊(二廠)
- 電廠kks編碼1
- 西北工業(yè)大學(xué)臺灣交換生入學(xué)申請表
評論
0/150
提交評論