多項(xiàng)式插值實(shí)驗(yàn)報告.doc_第1頁
多項(xiàng)式插值實(shí)驗(yàn)報告.doc_第2頁
多項(xiàng)式插值實(shí)驗(yàn)報告.doc_第3頁
多項(xiàng)式插值實(shí)驗(yàn)報告.doc_第4頁
多項(xiàng)式插值實(shí)驗(yàn)報告.doc_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

實(shí)驗(yàn)報告 實(shí)驗(yàn)報告一題目:多項(xiàng)式插值 摘要:熟悉插值多項(xiàng)式構(gòu)造,通過計(jì)算機(jī)解決實(shí)驗(yàn)問題;龍格現(xiàn)象的發(fā)生、防止,通過拉格朗日插值、分段線性插值以及三次樣條插值進(jìn)行插值效果的比較通過分析、推導(dǎo),掌握數(shù)據(jù)插值的思想方法;通過對插值方法的進(jìn)一步討論,了解插值的“龍格”現(xiàn)象;熟悉常用的分段線性插值和樣條插值的使用方法;掌握上機(jī)編程與調(diào)試能力。由于高次多項(xiàng)式插值不收斂,會產(chǎn)生Runge現(xiàn)象,本實(shí)驗(yàn)在給出具體的實(shí)例后,采用分段線性插值和三次樣條插值的方法有效的克服了這一現(xiàn)象,而且還取的很好的插值效果。前言:(目的和意義)1. 掌握拉格朗日插值法,分段線性插值法,三次樣條插值法。2. 深刻認(rèn)識多項(xiàng)式插值的缺點(diǎn)。3. 明確插值的不收斂性怎樣克服。4. 明確精度與節(jié)點(diǎn)和插值方法的關(guān)系。數(shù)學(xué)原理:在給定n+1個節(jié)點(diǎn)和相應(yīng)的函數(shù)值以后構(gòu)造n次的Lagrange插值多項(xiàng)式,實(shí)驗(yàn)結(jié)果表明(見后面的圖)這種多項(xiàng)式并不是隨著次數(shù)的升高對函數(shù)的逼近越來越好,這種現(xiàn)象就是Rung現(xiàn)象。解決Rung現(xiàn)象的方法通常有分段線性插值、三次樣條插值等方法。分段線性插值:設(shè)在區(qū)間a, b上,給定n+1個插值節(jié)點(diǎn)a=x0x1xn=b和相應(yīng)的函數(shù)值y0,y1,yn,求作一個插值函數(shù),具有如下性質(zhì):1) ,j=0,1,n。2) 在每個區(qū)間xi, xj上是線性連續(xù)函數(shù)。則插值函數(shù)稱為區(qū)間a, b上對應(yīng)n個數(shù)據(jù)點(diǎn)的分段線性插值函數(shù)。三次樣條插值:給定區(qū)間a, b一個分劃 :a=x0x1xN=b 若函數(shù)S(x)滿足下列條件:1) S(x)在每個區(qū)間xi, xj上是不高于3次的多項(xiàng)式。2) S(x)及其2階導(dǎo)數(shù)在a, b上連續(xù)。則稱S(x)使關(guān)于分劃的三次樣條函數(shù)。程序設(shè)計(jì):本實(shí)驗(yàn)采用Matlab的M文件編寫。其中待插值的方程寫成function的方式,如下function y=f(x);y=1/(1+25*x*x);寫成如上形式即可,下面給出主程序Lagrange插值源程序:function p=Lag_polyfit(X,Y)%Matlab函數(shù)文件Lag_polyfit.m%拉格朗日插值法多項(xiàng)式擬合 P17%p=Lag_polyfit(X,Y)% X 擬合自變量% Y 擬合函數(shù)值% p 所得的擬合多項(xiàng)式系數(shù)if size(X)=size(Y)error(變量不匹配);end %如果要擬合的函數(shù)值與自變量維數(shù)不一樣,則退出報錯tic %開始記時format long g %設(shè)置最合適的數(shù)字格式r=size(Y); n=r(2); %n為要擬合的數(shù)據(jù)長度p=zeros(1,n); %保存所得多項(xiàng)式系數(shù)p0=p; b=0; %工作變量W=poly(X); %W為以X為根的多項(xiàng)式dW=polyder(W); %dW為對多項(xiàng)式W 求導(dǎo)后的多項(xiàng)式系數(shù)z=polyval(dW,X); %z為以dW 為系數(shù)的多項(xiàng)式對X的值A(chǔ)=1 1; r=A; %A,r為長度為2 的(1,2)向量for i=1:n %計(jì)算循環(huán)開始A=1,-X(i); %A為一次多項(xiàng)式x-x(i)系數(shù)p0,r=deconv(W,A); %進(jìn)行多項(xiàng)式除法W/A,p0為商b=Y(i)/z(i);p0=b.*p0; %p0為累加項(xiàng)p=p+p0;end %循環(huán)結(jié)束disp(toc) %分段線性插值源程序clearn=input(將區(qū)間分為的等份數(shù)輸入:n);s=-1+2/n*0:n; %給定的定點(diǎn),Rf為給定的函數(shù)m=0;hh=0.001;for x=-1:hh:1; ff=0; for k=1:n+1; %求插值基函數(shù) switch k case 1 if xs(n); l=(x-s(n)./(s(n+1)-s(n); else l=0; end otherwise if x=s(k-1)&x=s(k)&x=s(k+1); l=(x-s(k+1)./(s(k)-s(k+1); else l=0; end end end ff=ff+Rf(s(k)*l; %求插值函數(shù)值 end m=m+1; f(m)=ff;end %作出曲線x=-1:hh:1;plot(x,f,r);grid onhold on 三次樣條插值源程序:(采用第一邊界條件)clearn=input(將區(qū)間分為的等份數(shù)輸入:n);%插值區(qū)間a=-1;b=1;hh=0.001; %畫圖的步長s=a+(b-a)/n*0:n; %給定的定點(diǎn),Rf為給定的函數(shù)%第一邊界條件Rf(-1),Rf(1)v=5000*1/(1+25*a*a)3-50/(1+25*a*a)4;for k=1:n; %取出節(jié)點(diǎn)間距 h(k)=s(k+1)-s(k);endfor k=1:n-1; %求出系數(shù)向量lamuda,miu la(k)=h(k+1)/(h(k+1)+h(k); miu(k)=1-la(k);end%賦值系數(shù)矩陣Afor k=1:n-1; for p=1:n-1; switch p case k A(k,p)=2; case k-1 A(k,p)=miu(p+1); case k+1 A(k,p)=la(p-1); otherwise A(k,p)=0; end endend%求出d陣for k=1:n-1; switch k case 1 d(k)=6*f2c(s(k) s(k+1) s(k+2)-miu(k)*v; case n-1 d(k)=6*f2c(s(k) s(k+1) s(k+2)-la(k)*v; otherwise d(k)=6*f2c(s(k) s(k+1) s(k+2); endend%求解M陣M=Ad;M=v;M;v;%m=0;f=0;for x=a:hh:b; if x=a; p=1; else p=ceil(x-s(1)/(b-a)/n); end ff1=0; ff2=0; ff3=0; ff4=0; m=m+1; ff1=1/h(p)*(s(p+1)-x)3*M(p)/6; ff2=1/h(p)*(x-s(p)3*M(p+1)/6; ff3=(Rf(s(p+1)-Rf(s(p)/h(p)-h(p)*(M(p+1)-M(p)/6)*(x-s(p); ff4=Rf(s(p)-M(p)*h(p)*h(p)/6; f(m)=ff1+ff2+ff3+ff4 ; end %作出插值圖形x=a:hh:b;plot(x,f,k)hold ongrid on 結(jié)果分析和討論:本實(shí)驗(yàn)采用函數(shù)進(jìn)行數(shù)值插值,插值區(qū)間為-1,1,給定節(jié)點(diǎn)為xj=-1+jh,h=0.1,j=0,,n。下面分別給出Lagrange插值,三次樣條插值,線性插值的函數(shù)曲線和數(shù)據(jù)表。圖中只標(biāo)出Lagrange插值的十次多項(xiàng)式的曲線,其它曲線沒有標(biāo)出,從數(shù)據(jù)表中可以看出具體的誤差。表中,L10(x)為Lagrange插值的10次多項(xiàng)式,S10(x),S40(x)分別代表n=10,40的三次樣條插值函數(shù),X10(x),X40(x)分別代表n=10,40的線性分段插值函數(shù)。x f(x) L10(x) S10(x) S40(x) X10(x) X40(x) -1.00000000000000 0.03846153846154 0.03846153846154 0.03846153846154 0.03846153846154 0.03846153846154 0.03846153846154 -0.95000000000000 0.04244031830239 1.92363114971920 0.04240833151040 0.04244031830239 0.04355203619910 0.04244031830239 -0.90000000000000 0.04705882352941 1.57872099034926 0.04709697585458 0.04705882352941 0.04864253393665 0.04705882352941 -0.85000000000000 0.05245901639344 0.71945912837982 0.05255839923979 0.05245901639344 0.05373303167421 0.05245901639344 -0.80000000000000 0.05882352941176 0.05882352941176 0.05882352941176 0.05882352941176 0.05882352941176 0.05882352941176 -0.75000000000000 0.06639004149378 -0.23146174989674 0.06603986172744 0.06639004149378 0.06911764705882 0.06639004149378 -0.70000000000000 0.07547169811321 -0.22619628906250 0.07482116198866 0.07547169811321 0.07941176470588 0.07547169811321 -0.65000000000000 0.08648648648649 -0.07260420322418 0.08589776360849 0.08648648648649 0.08970588235294 0.08648648648649 -0.60000000000000 0.10000000000000 0.10000000000000 0.10000000000000 0.10000000000000 0.10000000000000 0.10000000000000 -0.55000000000000 0.11678832116788 0.21559187891257 0.11783833017713 0.11678832116788 0.12500000000000 0.11678832116788 -0.50000000000000 0.13793103448276 0.25375545726103 0.14004371555730 0.13793103448276 0.15000000000000 0.13793103448276 -0.45000000000000 0.16494845360825 0.23496854305267 0.16722724315883 0.16494845360825 0.17500000000000 0.16494845360825 -0.40000000000000 0.20000000000000 0.20000000000000 0.20000000000000 0.20000000000000 0.20000000000000 0.20000000000000 -0.35000000000000 0.24615384615385 0.19058046675376 0.24054799403464 0.24615384615385 0.27500000000000 0.24615384615385 -0.30000000000000 0.30769230769231 0.23534659131080 0.29735691695860 0.30769230769231 0.35000000000000 0.30769230769231 -0.25000000000000 0.39024390243902 0.34264123439789 0.38048738140327 0.39024390243902 0.42500000000000 0.39024390243902 -0.20000000000000 0.50000000000000 0.50000000000000 0.50000000000000 0.50000000000000 0.50000000000000 0.50000000000000 -0.15000000000000 0.64000000000000 0.67898957729340 0.65746969368431 0.64000000000000 0.62500000000000 0.64000000000000 -0.10000000000000 0.80000000000000 0.84340742982890 0.82052861660828 0.80000000000000 0.75000000000000 0.80000000000000 -0.05000000000000 0.94117647058824 0.95862704866073 0.94832323122810 0.94117647058824 0.87500000000000 0.94117647058824 0 1.00000000000000 1.00000000000000 1.00000000000000 1.00000000000000 1.00000000000000 1.00000000000000 0.05000000000000 0.94117647058824 0.95862704866073 0.94832323122810 0.94117647058824 0.87500000000000 0.94117647058824 0.10000000000000 0.80000000000000 0.84340742982890 0.82052861660828 0.80000000000000 0.75000000000000 0.80000000000000 0.15000000000000 0.64000000000000 0.67898957729340 0.65746969368431 0.64000000000000 0.62500000000000 0.64000000000000 0.20000000000000 0.50000000000000 0.50000000000000 0.50000000000000 0.50000000000000 0.50000000000000 0.50000000000000 0.25000000000000 0.39024390243902 0.34264123439789 0.38048738140327 0.39024390243902 0.42500000000000 0.39024390243902 0.30000000000000 0.30769230769231 0.23534659131080 0.29735691695860 0.30769230769231 0.35000000000000 0.30769230769231 0.35000000000000 0.24615384615385 0.19058046675376 0.24054799403464 0.24615384615385 0.27500000000000 0.24615384615385 0.40000000000000 0.20000000000000 0.20000000000000 0.20000000000000 0.20000000000000 0.20000000000000 0.20000000000000 0.45000000000000 0.16494845360825 0.23496854305267 0.16722724315883 0.16494845360825 0.17500000000000 0.16494845360825 0.50000000000000 0.13793103448276 0.25375545726103 0.14004371555730 0.13793103448276 0.15000000000000 0.13793103448276 0.55000000000000 0.11678832116788 0.21559187891257 0.11783833017713 0.11678832116788 0.12500000000000 0.11678832116788 0.60000000000000 0.10000000000000 0.10000000000000 0.10000000000000 0.10000000000000 0.10000000000000 0.10000000000000 0.65000000000000 0.08648648648649 -0.07260420322418 0.08589776360849 0.08648648648649 0.08970588235294 0.08648648648649 0.70000000000000 0.07547169811321 -0.22619628906250 0.07482116198866 0.07547169811321 0.07941176470588 0.07547169811321 0.75000000000000 0.06639004149378 -0.23146174989674 0.06603986172744 0.06639004149378 0.06911764705882 0.06639004149378 0.80000000000000 0.05882352941176 0.05882352941176 0.05882352941176 0.058823529411

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論