高二數(shù)學(xué)圓的方程人教文知識精講_第1頁
高二數(shù)學(xué)圓的方程人教文知識精講_第2頁
免費預(yù)覽已結(jié)束,剩余7頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

用心 愛心 專心 高二數(shù)學(xué)高二數(shù)學(xué)圓的方程圓的方程人教版(文)人教版(文) 【本講教育信息本講教育信息】 一. 教學(xué)內(nèi)容: 圓的方程 二. 本周教學(xué)重難點: 1. 重點: 圓的標準方程,一般方程,參數(shù)方程 2. 難點: 求圓的方程,直線和圓的相交弦,圓系問題 【典型例題典型例題】 例 1 求圓心在軸上,且過點 A(1,4) ,B(2,)的圓的方程。x3 解:方法一:解:方法一:設(shè) 222 )(ryax 22 22 9)2( 16)1 ( ra ra 5 2 r a 25)2( 22 yx 方法二:方法二: 設(shè)0 22 FEyDxyx 0 2 E 0E0 22 FDxyx 0294 0161 FD FD 21 4 F D 0214 22 xyx 方法三:方法三:設(shè) 222 )(ryax 9)2(16) 1( 22 aa2a5| CAr 25)2( 22 yx 方法四:方法四: , 7 AB kCMAB 7 1 CM k 又 CM:) 2 1 , 2 3 (M) 2 3 ( 7 1 2 1 xy 設(shè) C(,0)在 CM 上 a) 2 3 ( 7 1 2 1 0a2a 5|CA25)2( 22 yx 用心 愛心 專心 例 2 求過直線與已知圓的交點,且在兩坐標軸073 yx0322 22 yxyx 上的四個截距之和為 8 的圓的方程。 解:解:設(shè)0)73(322 22 yxyxyx 令073)23()2( 22 yxyx 令, 0y073)2( 2 xx 同理:2 21 xx32 21 yy 8)32()2(2 0118 22 yyx 例 3 已知圓滿足: 截軸所得弦長為; 被軸分成兩段圓弧,其弧長的比y2yx 為; 圓心到直線 :的距離為的圓的方程。1:3l02yx 5 5 解:解:設(shè) 222 )()(rbyax 當時, 0x02 2222 rbabyy2| 21 yy4)( 2 21 yy 44)( 21 2 21 yyyy4)(44 2222 rbab 1 22 ar 當時, 0y02 2222 rbaaxx| 2 | 21 b xx 22222 4)(44brbaa 22 2br 由、得: 又 到 的12 22 ab),(bal 5 5 d 用心 愛心 專心 或 5 5 5 |2| ba 1)2( 2 ba12 ba12 ba 或 或 12 12 22 ab ba 12 12 22 ab ba 1 1 b a 1 1 b a 2r 或4) 1() 1( 22 yx4) 1() 1( 22 yx 例 4(1)已知:,求過點(1,)的切線方程4 22 yx3 (2)已知:,求過點 P(3,1)圓的切線方程。4)2() 1( 22 yx 解:解: (1)43yx (2) 當斜率存在時,設(shè) :l)3(1xky 031kykx2 1 |312| 2 k kk 22 44)32(kk 12 5 k 斜率不存在時, 即3x)3( 12 5 1xy03125yx 注:注: (1)C:,P(,),則過點 P 圓的切線方程為: 222 ryx 0 x 0 yC 2 00 ryyxx (2)C:過圓上一點 P(,)與圓相切的直線方程為: 222 )()(rbyax 0 x 0 y 2 00 )()(rbybyaxax 用心 愛心 專心 (3)C:() ,P(,)0 22 FEyDxyx04 22 FED 0 x 0 yC 過 P 圓的切線方程:0 22 00 00 F yy E xx Dyyxx 例 5 已知 P(5,0)和圓,過 P 作直線 與圓相交于 A、B,求弦 AB 中點16 22 yxl 的軌跡方程。 解:方法一:解:方法一:設(shè) AB 中點 M() ,則 A() ,B()yx, 11, y x 22, y x : l)5( xky 16 )5( 22 yx xky 0162510)1 ( 2222 kxkxk 0)1625)(1 (4100 224 kkk 3 4 3 4 k , 2 2 21 1 10 k k xx 2 2121 1 10 )10( k k xxkyy M:, 2 2 2 1 5 1 5 k k y k k x ) 3 4 , 3 4 (kk y x 代入中, () y x k 2 2 1 5 k k x 05 22 xyx 5 16 0 x 方法二:方法二:設(shè) A(,)B(,) 且 1 x 1 y 2 x 2 y16 2 1 2 1 yx16 2 2 2 2 yx 0)()( 21212121 yyyyxxxx 0)()( 21 21 2121 xx yy yyxx0 5 0 22 x y yx (在已知圓內(nèi)部分)05 22 xyx 方法三:方法三:點 M 在以 OP 為直徑的圓上 0)0()5(yyxx 05 22 xyx 注:注:以 A()B()為直徑的圓的方程是: 11, y x 22, y x 0)()( 2121 yyyyxxxx 用心 愛心 專心 例 6 設(shè) P()是圓外的一點,過 P 作圓的切線,試求過兩切點的切 00, y x 222 ryx 點弦所在的直線方程。 解:解:以 OP 為直徑的圓:0)()( 00 yyyxxx 又 0 00 22 yyxxyx 222 ryx :為所求直線方程 2 00 ryyxx 例 7 求與軸相切并與圓相外切的動圓的圓心的軌跡方程。y04 22 xyx 解:解: 設(shè)圓心為() 4)2( 22 yxba, 222 )()(abyax 2)2( 22 aba4444 222 aabaa 當時, )0(8 2 aab0a0y )0(0 )0(8 xy xxy 例 8 已知中,A() ,B(0,2) ,C() (是變量) ,求ABC0 , 2sin1,cos 面積的最大值。ABC 解:解:設(shè) C 點的坐標為()則即yx, sin1 cos y x 1) 1( 22 yx 是以為圓心,以 1 為半徑的圓 A,B()) 1, 0( )0 , 2(2 , 0 且 AB 的方程為即2244|AB1 22 yx 02 yx 則圓心()到直線 AB 的距離為1, 0 2 2 3 ) 1(1 |2) 1(| 22 C 到 AB 的最大距離為 2 2 3 1 的最大值是 ABC S23)2 2 3 1 (22 2 1 【模擬試題模擬試題】(答題時間:60 分鐘) 一. 選擇: 1. 點 P()在圓的內(nèi)部,則的取值范圍是( )aa12, 15 1) 1( 22 yxa 用心 愛心 專心 A. B. C. D. 1|a 13 1 a 5 1 |a 13 1 |a 2. 點 M()是圓()內(nèi)不為圓心的一點,則直線 00, y x 222 ayx0a 與該圓的位置關(guān)系是( ) 2 00 ayyxx A. 相切 B. 相交 C. 相離 D. 相切或相交 3. 點 P()與圓的位置關(guān)系是( )5 , 2 m24 22 yx A. 在圓外 B. 在圓內(nèi) C. 在圓上 D. 不確定 4. 直線()截圓所得弦長等于 4,則以、0cbyax0abc5 22 yx| a 、為邊長的三角形一定是( )|b| c A. 直角三角形 B. 銳角三角形 C. 鈍角三角形 D. 不存在 5. 圓上到直線的距離為的點共有( )0342 22 yyxx01 yx2 A. 1 個 B. 2 個 C. 3 個 D. 4 個 6. 圓過點()的最大弦長為,最小弦長為,則01264 22 yxyx0 , 1mn 等于( )nm A. B. C. D. 7210753310 2 23 5 7. 已知點 P()在圓上,則、的取值范圍是( ) 00, y x sin82 cos83 y x 0 x 0 y A. 22, 33 00 yx B. 82, 83 00 yx C. 610,115 00 yx D. 以上都不對 8. 兩圓與的位置關(guān)系是( ) sin24 cos23 y x sin3 cos3 y x A. 內(nèi)切 B. 外切 C. 相離 D. 內(nèi)含 二. 填空: 1. 圓關(guān)于直線對稱的方程是 。1)4()3( 22 yx0 yx 2. 圓上的點到直線的距離的最大值是 。4 22 yx3 yx 3. 已知點 P 是圓上的一個動點,點 A 是軸上的定點,坐標為(12,0) ,16 22 yxx 用心 愛心 專心 當 P 在圓上運動時,線段 PA 的中點 M 的軌跡方程是 。 4. 已知 A(1,1) ,C:一束光線從 A 出發(fā)經(jīng)軸反射到 C 上的最短距 sin27 cos25 y x y 離是 。 三. 解答題: 1. 求與軸切于點(5,0)并在軸上截取弦長為 10 的圓的方程。xy 2. 已知圓 C 與圓 C1:相外切,并且與直線 :相切于點02 22 xyxl03yx P(3,) ,求此圓 C 的方程。3 3. 已知一曲線是與兩個定點 O(0,0) 、A(,0) ()距離之比為的點a0a) 1(kk 的軌跡,求此曲線的方程,并判斷曲線的形狀。 4. 已知對于圓上任意一點 P() ,不等式恒成立,求1) 1( 22 yxyx,0myx 實數(shù)的取值范圍。m 用心 愛心 專心 試題答案試題答案 一. 1. D 2. C 3. A 4. A 5. C 6. A 7. C 8. B 二. 1. 2. 3. 4. 1)3()4( 22 yx2 2 3 24)6( 22 yx226 三. 1. 解法一:設(shè)所求圓的方程為,并且與軸交于 A、B 兩點, 222 )()5(bbyxy 由方程組 ,得 0 )()5( 222 x bbyx by 25 2 b 10| AB yy10|2525| 22 bbbb 25b 所求圓的方程為50)25()5( 22 yx 解法二:設(shè)所求圓的方程為)0()()( 222 rrbyax 圓與軸相切于點(5,0) x|br 5a 圓在軸上截得的弦長為 10, y 222 ) 2 10 (ra 由、得,5a25r 所求圓的方程為50)25()5( 22 yx 2. 解:設(shè)所求圓的圓心為 C() ,半徑為ba,r C()在過點 P 與 垂直的直線上ba,l 又 圓 C 與 相切于點 P 3 3 3 a b l 2 |3|ba r 圓 C 與圓 C1相外切 1 2 |3| ) 1( 22 ba ba 由得0343ba 用心 愛心 專心 由得 解得或1|62|49264 2 aaa 0 4 b a 34 0 b a 此時或 或2r6r4)4( 22 yx36)34( 22 yx 3. 解:設(shè) M()是曲線上任意一點,則yx,k yax yx 22 22 )( 化簡得02) 1() 1( 2222222 akaxkykxk 又 且 0k1k01 2 k0 11 2 2 22 2 2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論