安徽省宿州市埇橋區(qū)2018-2019學(xué)年高一上學(xué)期期末考試數(shù)學(xué)試題(解析版)_第1頁
安徽省宿州市埇橋區(qū)2018-2019學(xué)年高一上學(xué)期期末考試數(shù)學(xué)試題(解析版)_第2頁
安徽省宿州市埇橋區(qū)2018-2019學(xué)年高一上學(xué)期期末考試數(shù)學(xué)試題(解析版)_第3頁
安徽省宿州市埇橋區(qū)2018-2019學(xué)年高一上學(xué)期期末考試數(shù)學(xué)試題(解析版)_第4頁
安徽省宿州市埇橋區(qū)2018-2019學(xué)年高一上學(xué)期期末考試數(shù)學(xué)試題(解析版)_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、 宿州市埇橋區(qū) 2018-2019 學(xué)年度第一學(xué)期期末聯(lián)考一、選擇題(本大題共 12 小題,每小題 5 分,共 60 分在每小題給出的四個選項中,只有一項是符合題目要求的 )1.已知全集a.,集合,則集合( )c.【答案】a【解析】試題分析:,故選 a.考點:集合的運算.2.cos600的值等于()a.b.c.d.【答案】b【解析】【分析】利用誘導(dǎo)公式化簡即可得到結(jié)果.【詳解】cos600故選: b【點睛】本題考查利用誘導(dǎo)公式化簡求值,考查特殊角的三角函數(shù)值,屬于基礎(chǔ)題.3.sin15cos15=(a. b. c.)d.【答案】a【解析】4.已知 、 、 是的三個內(nèi)角,若,則是()a.b.c.

2、d.鈍角三角形銳角三角形直角三角形任意三角形【答案】a 【解析】【分析】依題意,可知 , 中有一角為鈍角,從而可得答案b c【詳解】 是a的一個內(nèi)角,abcsin 0,a又 sin cos tan 0,a b ccos tan 0,b c , 中有一角為鈍角,b c故abc 為鈍角三角形故選: a【點睛】本題考查三角形的形狀判斷,求得 , 中有一角為鈍角是判斷的關(guān)鍵,屬于中檔題b c5.已知,則)a.b.c.【答案】d【解析】【分析】利用誘導(dǎo)公式化簡即可得到結(jié)果.【詳解】故選:d【點睛】本題考查利用誘導(dǎo)公式化簡求值,考查配角法,屬于基礎(chǔ)題.6.函數(shù)的最小值和最小正周期為()a. 1 和 2【答

3、案】d【解析】【分析】由正弦函數(shù)的性質(zhì)即可求得的最小值和最小正周期【詳解】解:, 當(dāng)即 ( )f x;min又其最小正周期t ( )f x故選: d【點睛】本題考查正弦函數(shù)的周期性與最值,熟練掌握正弦函數(shù)的圖象與性質(zhì)是解題關(guān)鍵,屬于中檔題7.在平行四邊形 abcd 中,設(shè) ,下列等式中不正確的是(,)a.b.c.d.【答案】b【解析】【分析】在平行四邊形中,根據(jù)兩個向量的加減法的法則,以及其幾何意義可得,由此得出結(jié)論abcd【詳解】解:在平行四邊形中,abcd故 不正確,b故選: b【點睛】本題主要考查兩個向量的加減法的法則,以及其幾何意義,屬于基礎(chǔ)題8.下列各組函數(shù)是同一函數(shù)的是(;)與與;

4、與;與。a. b. c. d. 【答案】c【解析】【分析】與定義域相同,但是對應(yīng)法則不同;( )| |與)| |與 ( )是同一函數(shù);( )f x x x g x f x 0 與 ( )1 定義域不同; ( ) 22 1 與 ( ) 22 1函數(shù)與用什么字母表示無關(guān),只與定義xg x f xxxg ttt域和對應(yīng)法則有關(guān)【詳解】解:與,對應(yīng)法則不相同,x故這兩個函數(shù)不是同一函數(shù); ( ) x 與f xx r| |的定義域都是 ,這兩個函數(shù)的定義域相同,對應(yīng)法則不相同,故這兩個函數(shù)不是同一 函數(shù);與的定義域是 : 0,這兩個函數(shù)的定義域相同,對應(yīng)法則相同,故這兩個函數(shù)是同一x x函數(shù); ( )

5、2 1 與 ( ) 2 1,這兩個函數(shù)的定義域相同,對應(yīng)法則相同,故這兩個函數(shù)是同一函數(shù)f xx2xg tt2t故選: c【點睛】判斷兩個函數(shù)是否為同一函數(shù)的關(guān)鍵是要看定義域和對應(yīng)法則,只有兩者完全一致才能說明這兩個函數(shù)是同一函數(shù)屬基礎(chǔ)題9.函數(shù) f(x)e x2 的零點所在的一個區(qū)間是()xa. (2,1)【答案】c【解析】b. (1,0)c. (0,1)d. (1,2)【分析】將選項中各區(qū)間兩端點值代入 ( ),滿足 ( ) ( )0( , 為區(qū)間兩端點)的為答案f x f a f ba b【詳解】解:函數(shù) f(x)e x2在 r上單調(diào)遞增且圖像是連續(xù)的,至多一個零點,x因為 (0)10,

6、 (1) 10,所以零點在區(qū)間(0,1)上,ffe故選: c【點睛】本題考查了函數(shù)零點的概念與零點定理的應(yīng)用,屬于容易題10. 設(shè)則的值為()a.b.c. 2d.【答案】d【解析】【分析】由題意可先求 (2)ff【詳解】解: (2)f ( (2) (1)f ff故選: d 【點睛】本題主要考查了分段函數(shù)的函數(shù)值的求解,解題的關(guān)鍵是需要判斷不同的 所對應(yīng)的函數(shù)解析式,屬于基x礎(chǔ)試題11.二次函數(shù)與指數(shù)函數(shù)的圖象只可能是()a.b.c.d.【答案】a【解析】解:因為解:根據(jù)指數(shù)函數(shù) y=(b a )x 可知 a,b 同號且不相等則二次函數(shù) y=ax2+bx 的對稱軸-b 2a 0,排除 b,d,然

7、后選項 c,a-b0,a0,b a 1,則指數(shù)函數(shù)單調(diào)遞增,錯誤,選 a12.將函數(shù)的周期擴大到原來的 2 倍,再將函數(shù)圖象左移 ,得到圖象對應(yīng)解析式是()a.c.【答案】d【解析】【分析】直接利用函數(shù)圖象的與平移變換求出函數(shù)圖象對應(yīng)解析式【詳解】解:將函數(shù) 5sin(3 )的周期擴大為原來的 2 倍,yx得到函數(shù) 5sin( x),再將函數(shù)圖象左移 ,y得到函數(shù) 5sin ()5sin()5sin()yx故選: d【點睛】本題考查函數(shù) sin( +)的圖象變換,屬于基礎(chǔ)題.y ax二、填空題(本大題共 4 小題,每題 5 分,共 20 分請把正確答案填在題中的橫線上) 13.【答案】【解析】

8、【分析】利用兩角差的正切公式直接求值即可.【詳解】=故答案為:【點睛】本題主要考查兩角差的正切公式,特殊角的三角函數(shù)值,屬于基礎(chǔ)題.14.化簡【答案】【解析】【分析】利用對數(shù)的運算法則即可得出【詳解】解:原式2+2 101lg22故答案為:【點睛】本題考查了對數(shù)的運算法則,屬于基礎(chǔ)題15.在abc 中,已知 d 是 bc 上的點,且 cd2bd,設(shè),則 _(用 , 表示)【答案】 【解析】 解:16.設(shè)函數(shù),則下列結(jié)論對稱 的圖像關(guān)于直線 的圖像關(guān)于點對稱 的圖像向左平移 個單位,得到一個偶函數(shù)的圖像 的最小正周期為 ,且在 上為增函數(shù)其中正確的序號為_.(填上所有正確結(jié)論的序號)【答案】【解

9、析】【分析】利用正弦型函數(shù)的對稱性判斷的正誤,利用平移變換判斷的正誤,利用周期性與單調(diào)性判斷的正誤.【詳解】解:對于,因為 ( )sin0,所以不是對稱軸,故錯;f對于,因為 ( )sin,所以點f對于,將把 ( )的圖象向左平移 個單位,得到的函數(shù)為f xysin2(x)對于,因為若 0, ,則,所以 ( )在0, 上不單調(diào),故錯;f xx故正確的結(jié)論是故答案為:【點睛】此題考查了正弦函數(shù)的對稱性、三角函數(shù)平移的規(guī)律、整體角處理的方法,正弦函數(shù)的圖象與性質(zhì)是解本題的關(guān)鍵三、解答題(本大題共 6 小題,共 70 分,解答時寫出必要的文字說明、證明過程或演算步驟)17.已知全集(1)求,.;(2

10、)求. 【答案】(1)【解析】試題分析:集合的交集為兩集合的相同元素構(gòu)成的集合,集合的并集為兩集合所有元素構(gòu)成的集合,集合的補集為全集中除去集合中的元素,剩余的元素構(gòu)成的集合,本題(1)中先求得兩集合的補集,再求其并集再求與 a 的并集,(2)中先求得 b,c試題解析:(1)依題意有:,故有(2)由考點:集合的交并補運算18.已知,且,求 的值【答案】【解析】【分析】先利用同角三角函數(shù)關(guān)系式分別求出 sin、cos,再由兩角差余弦函數(shù)公式能求出 的值【詳解】因為,所以又,所以所以所以,【點睛】本題考查兩角差的求法,是中檔題,解題時要認(rèn)真審題,注意同角三角函數(shù)關(guān)系式和兩角差余弦函數(shù)公式的合理運用

11、19.(1)當(dāng),求的值;(2)設(shè)【答案】(1) ;(2)【解析】【分析】 (1)利用商數(shù)關(guān)系,化弦為切,即可得到結(jié)果;(2)利用誘導(dǎo)公式化簡,代入 即可得到結(jié)果.【詳解】(1)因為所以,原式=,且,(2),【點睛】本題考查三角函數(shù)的恒等變換,涉及到正余弦的齊次式(弦化切),誘導(dǎo)公式,屬于中檔題.20.已知(1)求 的定義域;(2)判斷 的奇偶性并予以證明;(3)求使【答案】(1)【解析】【分析】(1)求對數(shù)函數(shù)的定義域,只要真數(shù)大于0 即可;(2)利用奇偶性的定義,看函數(shù)的單調(diào)性可知,要使 ,需分 兩種情況討論,即可得到結(jié)果.0 ,解得 x(1,1)f(x),且 x(1,1),函數(shù) yf(x)

12、是奇函數(shù)和的關(guān)系,得到結(jié)論;(3)由對數(shù)和【詳解】(1)由(2)f(x)loga(3)若 a1,f(x)0,則若 0a0,則 0【點睛】本題主要考查函數(shù)的定義域、奇偶性與單調(diào)性,屬于中檔題. 判斷函數(shù)的奇偶性首先要看函數(shù)的定義域是否關(guān)于原點對稱,如果不對稱,既不是奇函數(shù)又不是偶函數(shù),如果對稱常見方法有:(1)直接法, (正為偶函數(shù),負(fù)為減函數(shù));(2)和差法,( 為偶函數(shù), 為奇函數(shù)) .(和為零奇函數(shù),差為零偶函數(shù));(3)作商法, 21.已知函數(shù)的圖象(部分)如圖所示,(1)求函數(shù) 的解析式和對稱中心坐標(biāo);(2)求函數(shù) 的單調(diào)遞增區(qū)間?!敬鸢浮浚?),對稱中心;(2),【解析】【分析】(1

13、) 由函數(shù)的圖象得出 a,求出函數(shù)的四分之一周期,從而得出 ,代入最高點坐標(biāo)求出 ,得函數(shù)的解析式,進而求出對稱中心坐標(biāo);(2)令,從而得到函數(shù) 的單調(diào)遞增區(qū)間.【詳解】(1)由題意可知,又當(dāng)時,函數(shù) 取得最大值 2,所以,所以函數(shù),對稱中心(2)令,解得,所以單調(diào)遞增區(qū)間為,【點睛】求 sin( +)的解析式,條件不管以何種方式給出,一般先求 ,再求 ,最后求 ;求 siny a x a y a( +)的單調(diào)遞增區(qū)間、對稱軸方程、對稱中心坐標(biāo)時,要把 + 看作整體,分別代入正弦函數(shù)的單調(diào)遞增xx區(qū)間、對稱軸方程、對稱中心坐標(biāo)分別求出 ,這兒利用整體的思想;求 sin( +)的最大值,需要借助正xx弦函數(shù)的最大值的求解方法即可22.已知函數(shù)(1)求函數(shù) 的最小正周期及在區(qū)間上的最大值和最小值; (2) 若,求的值【答案】(1)見解析;(2)【解析】【分析】(1)利用三角函數(shù)中的恒等變換應(yīng)用可化簡 ( )為 ( )2sin(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論