數(shù)字化PWM逆變系統(tǒng)控制關(guān)鍵技術(shù)研究及其應用(博士論文)_圖文_第1頁
數(shù)字化PWM逆變系統(tǒng)控制關(guān)鍵技術(shù)研究及其應用(博士論文)_圖文_第2頁
數(shù)字化PWM逆變系統(tǒng)控制關(guān)鍵技術(shù)研究及其應用(博士論文)_圖文_第3頁
數(shù)字化PWM逆變系統(tǒng)控制關(guān)鍵技術(shù)研究及其應用(博士論文)_圖文_第4頁
數(shù)字化PWM逆變系統(tǒng)控制關(guān)鍵技術(shù)研究及其應用(博士論文)_圖文_第5頁
已閱讀5頁,還剩73頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、湖南大學博士學位論文數(shù)字化PWM逆變系統(tǒng)控制關(guān)鍵技術(shù)研究及其應用姓名:楊金輝申請學位級別:博士專業(yè):電路與系統(tǒng)指導教師:戴瑜興2010-06-25數(shù)字化PWM 逆變系統(tǒng)控制關(guān)鍵技術(shù)研究及其應用摘 要高頻全控型電力電子器件和高性能DSP 控制器的問世,使PWM 逆變系統(tǒng)的數(shù)字控制成為當今電力電子技術(shù)的熱門研究領(lǐng)域。先進控制技術(shù)的應用可以提高PWM 逆變系統(tǒng)輸出電壓的穩(wěn)定性和可靠性,同時改善系統(tǒng)的動穩(wěn)態(tài)等性能,便于系統(tǒng)的優(yōu)化升級和產(chǎn)品化。PWM 逆變系統(tǒng)向著數(shù)字化、模塊化、網(wǎng)絡化、智能化的方向發(fā)展,本文針對數(shù)字化PWM 逆變系統(tǒng),研究和開發(fā)系統(tǒng)控制關(guān)鍵技術(shù),為系統(tǒng)的設計與開發(fā)提供理論依據(jù)和實現(xiàn)途徑

2、。(1研究了數(shù)字化PWM 逆變系統(tǒng)的應用領(lǐng)域與發(fā)展趨勢;從數(shù)字化PWM 逆變系統(tǒng)的波形控制、脈寬調(diào)制與系統(tǒng)控制的角度,深入研究了逆變控制技術(shù)的理論基礎和技術(shù)基礎;闡述了項目的研究背景和作者所承擔的開發(fā)任務。(2對于數(shù)字化單相PWM 逆變器,將其主電路分為逆變橋單元和輸出濾波單元,分別建立二者的數(shù)學模型。逆變橋單元和PWM 產(chǎn)生過程等效為一個增益恒定的放大器,建立了輸出濾波單元的連續(xù)時間、離散時間模型,對LC 濾波參數(shù)進行了分析設計。對于數(shù)字化三相PWM 逆變器,分別建立了基于三相靜止abc 坐標系模型、基于坐標變換坐標系模型和基于同步旋轉(zhuǎn)dq 坐標系模型,三相濾波單元可通過坐標變換解耦為兩個單

3、相濾波單元,因而單相PWM 逆變器的研究方法和結(jié)論都可應用于三相PWM 逆變器。為便于對逆變系統(tǒng)控制算法進行仿真研究,建立了單相和三相PWM 逆變器的Matlab 仿真電路模型。(3針對逆變系統(tǒng)負載適應性能不強、動靜態(tài)性能不佳的特點,深入研究了幾種實用型逆變波形復合控制策略。通過算法理論推導及分析,給出了各種復合控制策略的實現(xiàn)方法并做了相應的仿真研究;對各種策略的特點和特性進行分析和比較。針對逆變系統(tǒng),提出了一種基于神經(jīng)網(wǎng)絡內(nèi)模原理的逆變波形控制策略,建立了系統(tǒng)的正模型和神經(jīng)網(wǎng)絡內(nèi)??刂破鳎行У奶岣吡讼到y(tǒng)的逆變波形質(zhì)量和負載適應性。(4從載波調(diào)制和空間矢量調(diào)制的角度對單相和三相逆變系統(tǒng)的調(diào)制

4、技術(shù)進行了深入研究。對于單相逆變系統(tǒng),分析了采樣型SPWM 技術(shù),給出了一種脈沖二重化數(shù)字SPWM 技術(shù),在相同載波頻率下獲得較普通SPWM 低兩倍諧波的波形。通過引入單相逆變系統(tǒng)“線電壓”的概念,實現(xiàn)了單相SVPWM 技術(shù),研究結(jié)果證明了單相SVPWM 與載波PWM 的統(tǒng)一性。對于三相逆變系統(tǒng),將單相脈沖多重化SPWM 實現(xiàn)方法推廣到三相系統(tǒng)實現(xiàn)三相數(shù)字SPWM 技術(shù);研究了三相SVPWM 技術(shù)的原理及實現(xiàn)方法;通過對兩電平以及多電平載波PWM 和SVPWM 兩類調(diào)制技術(shù)的對比研究,證明了三相SVPWM 與載波PWM 的統(tǒng)一性。博士學位論文研究表明SVPWM 通過在載波PWM 調(diào)制中迭加適當

5、的零序分量實現(xiàn),SVPWM 通過對載波調(diào)制信號注入零序信號與載波PWM 相統(tǒng)一。(5針對逆變系統(tǒng)控制與功能實現(xiàn),重點分析研究了嵌入式實時操作系統(tǒng)C/OS-II平臺下的軟件鎖相控制算法。以逆變電源為例,實現(xiàn)了C/OS-II在LF2407A 上的移植;對系統(tǒng)進行任務劃分和實現(xiàn)調(diào)度;推導了基于同步調(diào)制和基于異步變頻調(diào)制的軟件鎖相控制算法。利用LF2407A 微處理器,分別給出了兩種軟件鎖相控制算法的DSP 實現(xiàn)方法,解決了旁路/逆變輸出切換時對系統(tǒng)和負載的沖擊問題和EPS 在系統(tǒng)斷電情況下快速起動、快速切換的問題。(6應用數(shù)字化PWM 逆變系統(tǒng)控制關(guān)鍵技術(shù),研制高性能環(huán)保節(jié)能型數(shù)字化逆變電源系列定型

6、產(chǎn)品,實現(xiàn)數(shù)字化升級換代,提高產(chǎn)品的性價比。本文重點針對一款70k W 數(shù)字化三相EPS 新產(chǎn)品的研制工作,從控制關(guān)鍵技術(shù)算法的實現(xiàn)思想、核心硬件模塊開發(fā)、軟件系統(tǒng)設計等方面闡述數(shù)字化EPS 系統(tǒng)的設計創(chuàng)新。數(shù)字化逆變系統(tǒng)控制關(guān)鍵技術(shù)解決了控制精度、跟蹤速度和逆變輸出的切換時間、轉(zhuǎn)換效率等核心技術(shù)問題,整機技術(shù)性能指標到達有關(guān)標準要求和預期的設計目標,目前該機型已作為2010年新產(chǎn)品投入市場應用。數(shù)字化PWM 逆變系統(tǒng)控制關(guān)鍵技術(shù),逆變波形復合控制策略提高了逆變波形質(zhì)量、系統(tǒng)動靜態(tài)特性和負載適應性;脈寬調(diào)制技術(shù)解決了逆變系統(tǒng)逆變控制問題,簡化了逆變算法,提高了逆變效率;軟件鎖相控制算法解決了E

7、PS 旁路/逆變輸出切換沖擊問題以及快速起動/切換的問題。關(guān)鍵詞:逆變系統(tǒng);逆變器;波形控制;脈寬調(diào)制;鎖相控制;EPS數(shù)字化PWM 逆變系統(tǒng)控制關(guān)鍵技術(shù)研究及其應用AbstractDigital control of PWM (Pulse Width Modulation inverter system becomes a popular research area in power electronic technology with the appearance of high performance power transistor and DSP controller. The ap

8、plication of cybernetics technology can upgrade the stability of the systems output voltage, improve the performance of the dynamic and the steady response, also make the products easily standardized and upgraded. To meet the trend of a digital, modulational, network, intellectual PWM inverter syste

9、m, the dissertation focused on the research of its digital control key technology, and provides theory foundation and realization means for the systems supply design and development.(1Digital PWM inverter systems application field and development trend have been researched. The theory and technique

10、foundation have been deeply researched based on the digital PWM inverter systems waveform control, inverter control and system control argument. The paper explained the research background of the project and the project tasks undertaken by author.(2To reserach digital single-phase PWM inverter, the

11、main circuit was separated into inverter model and output filter model, and its mathematical model was built independently. The inverter model was equival to an amplifier. The LC parameters of the output filter model had been analysised and designed. To reserach digital three-phase PWM inverter, the

12、 mathematical models based on abc coordinate, coordinate transformation, dqo coordinate transformation were built independently. The three-phase filter can be decoupled to two single-phase filters through coordinate transformations. So its easy for three-phase inverter model introducing single-phase

13、 inverter study method. The simulation models of the digital single-phase and three-phase PWM inverter systems were found to make the system structure clear and convenient for the system control algorithm design.(3To solve the problem of the performance and load adaptability of PWM inverter system b

14、eing not satisfying, this paper researched several practical digital waveform control strategies. Through the controller arithmetic deducing and analysis, the controller realization method was put forward. And through the simulation research, its own characteristic was analyzed and compared to each

15、other. In addition, the paper put forward neural network internal model control theory博士學位論文based on inverter waveform control arithmetic. The algorithm could effectively enhance the system dynamic or static performance and system load adaptability.(4According to the single-phase inverter and the th

16、ree-phase inverter, digital inverter control technology was studied on two categories of carrier modulation and space vector modulation. In the category of single-phase inverter, a pulse multiplied digital SPWM technique was put forward. And its waveform spectrum proved that the technique can obtain

17、 twice the harmonics frequency than the common SPWM technique can, under the same carrier frequency. Through introducing the concept of single-phase inverter “l(fā)ine voltage”, a single-phase space vector PWM technique was studied and its DSP realization method was put forward. The research proved the

18、equivalence between carrier PWM and space vector PWM in single-phase inverter. In the category of three-phase inverter, the theory of the three-phase carrier PWM and space vector PWM technology were studied and its DSP realization methods were put forward. This paper also further studied and compare

19、d the two PWM inverter control algorithms, and proved that they are equivalence in nature. The results proved that space vector PWM is a special kind of carrier PWM, the zero sequence signal is the connection with space vector PWM and carrier PWM.(5For the inverter system control and function realiz

20、ation, the paper analysised and researched the phase lock algorithm based on C/OS-II operation system. Take inverter power for example, C/OS-II operation system was transplanted to microchip LF2407A and the system duty was divided and dispatched. A synchronous modulation algorithm and an asynchronou

21、s varying-Frequency modulation algorithm based on the inverter digital phase lock technique were put forward. These arithmetic effectively solved the impact problem of the system and loads in the EPS(Emergency Power Supply bypass/inverter output switching, and also solved its quick start and fast-sw

22、itching problem under the city power failure.(6The digital PWM inverter control key technologies were using to develop power products, realize products promotion and enhance its performance. The paper explained the design innovation of digital EPS system by the control key technology algorithms real

23、ization, core hardware modules development and software systems design of a 70k W digital three-phase EPSs design and application. The digital PWM inverter sysytems control key technologies improved control precision, track speed and solved the EPS quick start and fast-switching problem. The EPS pro

24、totype completely met the standard requests and the anticipated design requirements. As 2010s new product, it has been invested market using.The research and development of digital PWM inverter system control key technology, waveform control strategies enhanced system dynamic and static responding c

25、haracteristic, inverter waveform quality and load adaptability. Inverter control arithmetic solved inverter power control problem, simplified the control arithmetic and improved inverter efficiency. The phase lock algorithm solved the EPS bypass/inverter output switching impact problem and quick sta

26、rt and fast-switching problem.Key Word: Inverter System; Inverter; Waveform Control; Pulse Width Modulation;Phase Lock Control; Emergence Power Supply插圖索引圖1.1 逆變系統(tǒng)圖.1圖1.2 兩電平型PWM 逆變電路拓撲結(jié)構(gòu).3圖1.3 二極管箝位式多電平型PWM 逆變電路拓撲結(jié)構(gòu).3圖1.4 H 橋單元級聯(lián)式三相PWM 逆變電路拓撲結(jié)構(gòu).4圖1.5 三相四橋臂型PWM 逆變電路拓撲結(jié)構(gòu).4圖1.6 PID 控制原理框圖.5圖1.7 雙閉環(huán)控制原

27、理框圖.6圖1.8 狀態(tài)反饋控制原理框圖.6圖1.9 無差拍控制原理框圖.6圖1.10 重復控制原理框圖.7圖1.11 滑模變結(jié)構(gòu)控制原理框圖.7圖1.12 模糊控制原理框圖.8圖1.13 神經(jīng)網(wǎng)絡控制原理框圖.8圖1.14 逆變系統(tǒng)脈寬調(diào)制技術(shù)分類.9圖2.1 單相全橋逆變器主電路. 13圖2.2 SPWM 對稱規(guī)則采樣法. 14圖2.3 輸出濾波單元連續(xù)時間數(shù)學模型框圖. 16圖2.4 輸出濾波單元離散時間數(shù)學模型框圖. 18圖2.5 單相全橋逆變器電路等效框圖. 20圖2.6 二階LC 低通濾波器的波特圖. 21圖2.7 負載與阻尼比的關(guān)系. 22圖2.8 單相全橋PWM 逆變器開環(huán)仿真

28、模型. 23圖2.9 系統(tǒng)階躍信號和脈寬信號響應圖. 23圖2.10 逆變輸出電壓、電流仿真波形. 24圖2.11 三相PWM 逆變器主電路. 24圖2.12 三相電壓矢量圖. 26圖2.13 三相靜止abc 坐標系與兩相旋轉(zhuǎn)dq 坐標系. 28圖2.14 三相PWM 逆變器開環(huán)仿真模型. 30圖2.15 三相逆變輸出電壓仿真波形. 30圖2.16 三相逆變輸出電流仿真波形. 30圖3.1 重復控制器內(nèi)模(s 域. 32博士學位論文圖3.2 重復控制器內(nèi)模(z 域. 33圖3.3 重復控制系統(tǒng)結(jié)構(gòu)圖. 33圖3.4 改進型重復控制器內(nèi)模. 34圖3.5 “嵌入式”改進型重復控制系統(tǒng)結(jié)構(gòu)圖. 3

29、5圖3.6 穩(wěn)定條件的幾何意義. 35圖3.7 逆變器的頻率響應. 37圖3.8 補償器S (s 的頻率響應. 38圖3.9 PWM 正弦逆變系統(tǒng)重復控制仿真原理圖. 39圖3.10 PWM 逆變器子模塊. 39圖3.11 PWM 正弦逆變系統(tǒng)仿真波形(空載 . 39圖3.12 PWM 正弦逆變系統(tǒng)仿真波形(阻性負載. 40圖3.13 PWM 正弦逆變系統(tǒng)仿真波形(整流性負載. 40圖3.14 輸入控制脈沖形式. 42圖3.15 基于無差拍控制和重復控制的復合控制原理框圖. 43圖3.16 PWM 正弦逆變系統(tǒng)無差拍控制仿真模型(線性負載 . 45 圖3.17 基于無差拍控制和重復控制的復合控

30、制仿真模型(周期性擾動負載. 45圖3.18 PWM 正弦逆變系統(tǒng)仿真波形(阻性負載. 45圖3.19 PWM 正弦逆變系統(tǒng)無差拍控制系統(tǒng)仿真波形(周期性擾動負載. 46 圖3.20 基于無差拍控制與重復控制的復合控制系統(tǒng)仿真波形(周期性擾動負載 . 46圖3.21 基于PID 控制的原理框圖. 47圖3.22 基于PID 控制和重復控制的復合控制原理框圖. 49圖3.23 PID 控制器等效圖. 50圖3.24 PID 控制系統(tǒng)波特圖. 51圖3.25 PWM 正弦逆變系統(tǒng)PID 控制仿真模型. 51圖3.26 基于PID 控制和重復控制的復合控制仿真模型. 52圖3.27 PWM 正弦逆變

31、系統(tǒng)仿真波形(阻性負載. 52圖3.28 PWM 正弦逆變系統(tǒng)PID 控制系統(tǒng)仿真波形(整流性負載. 53 圖3.29 基于PID 控制與重復控制的復合控制系統(tǒng)仿真波形(整流性負載. 53圖3.30 基于模糊PID 控制和重復控制的復合控制原理框圖. 54圖3.31 模糊控制器原理框圖. 54圖3.32 模糊PID 控制結(jié)構(gòu)框圖. 55圖3.33 模糊變量的隸屬度函數(shù)曲線. 55圖3.34 基于模糊PID 控制與重復控制的復合控制仿真模型. 57數(shù)字化PWM 逆變系統(tǒng)控制關(guān)鍵技術(shù)研究及其應用圖3.35 模糊PID 控制器仿真模型. 57圖3.36 基于模糊PID 控制和重復控制的復合控制仿真波

32、形(空載. 58圖3.37 基于模糊PID 控制和重復控制的復合控制仿真波形(阻性負載 . 58 圖3.38 基于模糊PID 控制和重復控制的復合控制仿真波形(整流性負載. 58 圖3.39 基于模糊PID 控制和重復控制的復合控制突加負載仿真波形(t =0.04s. 58圖3.40 傳統(tǒng)內(nèi)??刂平Y(jié)構(gòu)框圖. 59圖3.41 神經(jīng)網(wǎng)絡預估器的三層BP 網(wǎng)絡. 60圖3.42 正弦逆變系統(tǒng)的神經(jīng)網(wǎng)絡內(nèi)??刂平Y(jié)構(gòu)框圖. 60圖3.43 逆變系統(tǒng)神經(jīng)網(wǎng)絡預估器BP 網(wǎng)絡結(jié)構(gòu). 63圖3.44 實用內(nèi)模控制器結(jié)構(gòu). 64圖3.45 神經(jīng)網(wǎng)絡的訓練結(jié)果. 64圖3.46 基于神經(jīng)網(wǎng)絡內(nèi)模的正弦逆變系統(tǒng)Ma

33、tlab 仿真模型. 65圖3.47 濾波器參數(shù)對系統(tǒng)輸出的影響. 65圖3.48 基于神經(jīng)網(wǎng)絡內(nèi)??刂频恼夷孀兿到y(tǒng)仿真波形. 66圖4.1 單極性(左 與雙極性(右PWM 控制方式. 70圖4.2 SPWM 自然采樣法. 71圖4.3 SPWM 不對稱規(guī)則采樣法. 71圖4.4 數(shù)字脈沖正弦序列與SPWM 控制. 72圖4.5 SPWM 脈沖多重化. 73圖4.6 脈沖多重化數(shù)字SPWM 頻譜圖. 73圖4.7 脈沖二重化數(shù)字SPWM 波形. 74圖4.8 SPWM 脈沖二重化的DSP 實現(xiàn). 75圖4.9 SPWM 脈沖二重化實驗電壓波形及頻譜. 75圖4.10 典型單相全橋PWM 逆變

34、橋電路. 75圖4.11 單相逆變器輸出電壓矢量圖. 76圖4.12 單相SVPWM 線性擬合過程. 77圖4.13 單相SVPWM 的DSP 算法實現(xiàn). 78圖4.14 單相SVPWM 實驗相電壓波形. 78圖4.15 單相SVPWM 開關(guān)優(yōu)化模式. 79圖4.16 DSP LF2407調(diào)制方法. 79圖4.17 單相SVPWM 開關(guān)優(yōu)化模式II 調(diào)制波與零序信號. 81圖4.18 單相SVPWM 開關(guān)優(yōu)化模式II 逆變波形及零序信號. 81圖4.19 典型三相半橋逆變橋電路. 81圖4.20 數(shù)字化三相SPWM 脈沖多重化的DSP 實現(xiàn). 82博士學位論文圖4.21 數(shù)字化三相SPWM 的實驗波形及頻譜. 83圖4.22 abc -dq 坐標變換后的離散平面電壓矢量. 84圖4.23 三相SVPWM 矢量計算. 85圖4.24 三相SVPWM 算法的DSP 實現(xiàn). 86圖4.25 三相SVPWM 的實驗波形及頻譜. 86圖4.26 三相SPWM 載波注入零序信號. 87圖4.27 三相SVPWM 調(diào)制波波形. 89圖4.28 三相SVPWM 零序信號與三相SPWM 調(diào)制波. 89圖4.29 三相SVPWM 相電壓波形與零序電壓. 90圖4.30 五電平載波層疊調(diào)制技術(shù)原理圖. 90圖4.31 調(diào)制原理圖

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論