《三角形的內(nèi)角和》教學設計x6014_第1頁
《三角形的內(nèi)角和》教學設計x6014_第2頁
《三角形的內(nèi)角和》教學設計x6014_第3頁
《三角形的內(nèi)角和》教學設計x6014_第4頁
《三角形的內(nèi)角和》教學設計x6014_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、三角形的內(nèi)角和教學設計姓名 朱忠慧 衡陽市石鼓區(qū)五家巷小學 電QQ1127586520 教學內(nèi)容:本節(jié)課教學內(nèi)容是人教版四年級下冊第五單元p67頁 一、教材分析:   三角形的內(nèi)角和是三角形的一個重要性質。本節(jié)課是安排在學習三角形的概念及分類之后進行的,它是學生以后學習多邊形的內(nèi)角和及解決其它實際問題的基礎。學生在掌握知識方面:已經(jīng)掌握了三角形的分類,比較熟悉平角等有關知識;能力方面:經(jīng)過三年多的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣。因此,教材很重視知識的探索與發(fā)現(xiàn),安排了一系列的實驗操作活動。教材呈現(xiàn)教學內(nèi)容

2、時,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、算、拼等活動,讓學生探索、實驗、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180°。  二、學情分析 、四年級的學生已經(jīng)有了探索三角形內(nèi)角和的知識(或技能)基礎。如掌握了銳角、直角、鈍角、平角的概念;知道直角或平角的度數(shù)、會用量角器度量角的度數(shù)。認識長方形、正方形,知道他們的四個角都是直角,認識了三角形,知道了三角形根據(jù)角分,有銳角三角形、直角三角形和鈍角三角形。已經(jīng)知道了等腰三角形和正三角形。  、學生的起點。

3、已經(jīng)有不少學生知道了三角形內(nèi)角和是度的結論,但是很可能都知其然不知其所以然。 三、教學目標: 1能說出三角形的內(nèi)角和的含義,會復述“三角形的內(nèi)角和是180°”這個結論,能初步運用這個結論進行簡單的計算。 2經(jīng)歷探索與驗證“三角形內(nèi)角和等于180°”的過程,能用至少一種方法解釋“三角形的內(nèi)角和是180°”這個結論,養(yǎng)成動手操作探究的習慣,發(fā)展分析、歸納和推理能力。 3在“預習、探究、歸納”等的學習活動中,逐步培養(yǎng)學生務實求真的探究精神,培養(yǎng)樂于自主學習和樂于與人合作分享的習慣。 四、教學過程 (一、)激趣引入:同學們,今天我們來猜一個謎語,大家有興趣嗎?(播放課件)

4、 師:同學們,請你用心觀察一下三角形都有幾個角?(指名回答:三個)師:三角形的這三個角就叫做三角形的內(nèi)角。為了方便,我們通常用1、2 、3表示。. 提問:1+2+3叫做什么?生:1+2+3叫做三角形的內(nèi)角和。師:今天我們一起來學習三角形的內(nèi)角和的相關知識師板書:三角形的內(nèi)角和 (二、)小組合作,動手操作,探究新知 1、驗證三角形的內(nèi)角和 a師:猜一猜三角形的內(nèi)角和是多少度呢?同桌互相說說自己的看法。指名口答。三角形的內(nèi)角和真的是180度嗎?口說無憑,你們有什么辦法能讓老師相信呢?” 學生回答。 首先,請同學們選擇量算法進行驗證, 完成導學案任務。 b.操作、驗證三角形內(nèi)角和是180°

5、。·用量算的方法去驗證三角形的內(nèi)角和是180度。(1)動手操作:師:那咱們先看看活動要求(播放課件) 哪位同學能大聲地讀一讀。同學們都清楚活動要求了嗎?現(xiàn)在按4個人一小組,請同學們 分工合作,開始研究吧!把你們的發(fā)現(xiàn)填在導學案上。(2)組織交流 師:請同學們匯報你的量算結果 生回答。(預設答案:180°180°181°180°179°180°)為什么每一組的答案不一樣?請小組討論一下。生回答:(預設答案:由于測量誤差造成的,有可能是三角形不一樣,所以內(nèi)角和不一樣。)師:通過量一量、算一算,我們知道三角形的內(nèi)角和近似于180&

6、#176;?,F(xiàn)在能肯定地說三角形的內(nèi)角和一定是180°嗎?生回答。用撕拼法、折角法驗證三角形的內(nèi)角和是180度。(1)討論驗證方法師:既然用量算法,我們不能確定三角形的內(nèi)角和一定是180°,那同學們還能想出什 么好辦法? 生:用撕拼的方法,就是把三角形的三個內(nèi)角撕下來拼在一塊,看是不是拼成一個平角。 師:請你上臺展示你的方法。(你真是我們班的數(shù)學小博士,掌聲送給她。) 師:除了撕拼的方法,還有沒有更好的方法?生:折。把三角形三個角折在一起,看是不是一個平角。請你上臺展示你的方法。師:真了不起,能想出這么好的方法。(2)動手操作(播放課件)請同學們拿出剛才已經(jīng)標好角的三角形,

7、選擇一種你喜歡的方法趕緊開始吧!把你的發(fā)現(xiàn)填在導學案上。 (3)反饋交流學生完成操作活動后,教師組織學生進行反饋、交流。歸納結論:1、剛才我們用撕拼的方法驗證了不管是什么樣的三角形,三個內(nèi)角撕下來拼在一起都剛好拼成一個平角。也就是說,三角形的內(nèi)角和是180°。2、剛才我們用折拼的方法驗證了不管是什么樣的三角形,三個內(nèi)角折拼在一起都剛好拼成一個平角。也就是說,三角形的內(nèi)角和是180°。用推理法驗證三角形的內(nèi)角和是180度。師:(出示課件)驗證三角形的內(nèi)角和是180°的方法很多,今天,老師給大家介紹一位數(shù)學家,他用了我們這些方法之外的方法驗證了三角形的內(nèi)角和。a.請看

8、大屏幕,并嘗試用數(shù)學算式表達帕斯卡的推理過程。 b.學生列算式,講清算理。師:你就是那個帕斯卡,其實,我們班中就有許多帕斯卡。(掌聲送給她)c.交流、小結:帕斯卡是利用推理的方法來驗證三角形的內(nèi)角和是180°。2、歸納驗證結果師:同學們,我們剛才用不同的方法驗證了不同形狀和大小的三角形的內(nèi)角和,得到了一個相同的發(fā)現(xiàn),這發(fā)現(xiàn)就是:任意三角形的內(nèi)角和是180°。教師板書:任意三角形的內(nèi)角和是180°學生齊讀一遍。(3、 )知識應用 師:數(shù)學知識來源于生活,又應用于生活,讓我們來智慧島看一看三角形的內(nèi)角和有什么應用吧!(播放課件)獨立思考,小組同學小心交流.大部分同學已

9、經(jīng)做完了,誰來匯報一下直角三角形也想請大家?guī)兔ΑT鯓訋椭??請試著算一算吧。大家都表現(xiàn)得特別棒,接著看誰來啦?(四、)布置作業(yè)課本第69頁第1題板書設計: 三角形的內(nèi)角和 猜想 180° 不一定是180° 驗證 量算 撕拼 折角 推理180°180°182° 平角(180°) 平角(180°) 180° 結論 任意三角形的內(nèi)角和是180°五、教學反思三角形的內(nèi)角和是人教版數(shù)學四年級下冊第五單元的一節(jié)課,是在學生學習了三角形的特征以及三角形分類的基礎上,進一步研究三角形三個角的關系。課堂上我注意留給學生充

10、分進行自主探究和交流的空間,讓學生探索、實驗、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180°。一、創(chuàng)設情境,引入課題,以疑激趣課堂開始,我用猜謎語活動引入,猜謎語是學生生活中常見的,也是非常喜歡的活動,把謎語和數(shù)學知識結合起來,學生情趣一開始就上來了。這節(jié)課在復習舊知“三角形有幾個角?幾個頂點?幾條邊?一個平角是多少度?三角形的分類”后,我引出了研究問題“三角形的內(nèi)角指的是什么?”“三角形的內(nèi)角和是多少度?”。要學生猜一猜三角形的內(nèi)角和是多少?這一問題的出現(xiàn),使學生萌生了想了解其中奧秘的想法,激發(fā)了學生探究新知的欲望。二、小組合作,自主探究。“光猜想還不行,要驗證三角形的內(nèi)角和是

11、不是180°?還需要驗證”。我趁勢引導學生小組合作,動手驗證。通過小組內(nèi)交流,使學生認識到可以通過多種途徑來驗證,可以量一量、撕一撕、拼一拼、折一折、算一算。在明確驗證方法后,學生在小組內(nèi)通過動手操作、記錄、觀察,驗證三角形的內(nèi)角和是否為180°。之后我組織學生在全班匯報交流,有的小組通過量一量、算一算的方法,得出三角形的內(nèi)角和是180°或接近180°(測量誤差);有的小組通過撕一撕、拼一拼的方法發(fā)現(xiàn):各類三角形的三個內(nèi)角可以拼成一個平角。還有的小組通過折一折、拼一拼的方法也發(fā)現(xiàn):各類三角形的三個內(nèi)角都可以拼成一個平角。此時我讓學生上臺演示,在演示中進一

12、步驗證,使學生在小組合作、自主探究、全班交流中獲得了三角形的內(nèi)角和的確是180°的結論。這一系列活動潛移默化地向學生滲透了“轉化”的數(shù)學思想,為后繼學習奠定了必要的基礎。三、練習設計,由易到難。探究新知是為了應用,這節(jié)課在練習的安排上,我注意把握練習層次,共安排三個層次,由易到難,逐步加深。在應用“三角形的內(nèi)角和是180°”這一結論時,第一層練習是已知三角形兩個內(nèi)角,求另一個角。練習內(nèi)容的安排從知識的直接應用到間接應用,數(shù)學信息的出現(xiàn)從比較顯現(xiàn)到較為隱藏。第二層練習是判斷題,讓學生應用結論思考分析,檢驗語言的嚴密性。第三層練習是計算題,已知三角形一個內(nèi)角或者一個角,求另一個

13、角。第四層練習是計算題,任何角也沒告知求其它角。第五層練習是拓展題,讓學生用學過的知識解決四邊形的內(nèi)角和,使學生的思維得到拓展。這些練習顧及到了智力水平不同的學生,形式上具有趣味性,激發(fā)了學生主動解題的積極性。存在問題:本節(jié)課在教學時還存在一些設計的意愿與實際的教學存在差距的問題。往往在設計教學環(huán)節(jié)的時候是從教材出發(fā)的。而忽視了學生的實際。所以在備課的同時更要備學生。而且在本課的活動中,由于有一些膽怯的孩子還處在配合中,很少主動發(fā)現(xiàn)問題,其次是對于學生在量一量中出現(xiàn)的小問題我沒有足夠的教學機智來好好地解決。如果對此借機引導是由誤差造成的,并借此教育學生一點點的馬虎就會導致不一樣的結果該有多好。

14、還是缺少教學機智。6、 案例研討一、案例背景三角形的內(nèi)角和是人教版新課程標準實驗教科書四年級數(shù)學下冊第五單元的教學內(nèi)容。新課標把原屬于初中的這部分內(nèi)容引入到四年級下冊數(shù)學中,是因為“三角形的內(nèi)角和”是三角形的一個重要性質,是“空間與圖形”領域的重要內(nèi)容之一,學好它有助于學生理解三角形內(nèi)角之間的關系,進一步豐富學生對三角形的認識和理解,為今后掌握多邊形內(nèi)角和及其他實際問題的打下基礎。四年級的學生通過前面知識的學習,已經(jīng)初步掌握了三角形的一些知識,他們能夠按不同的標準區(qū)分各種三角形,甚至有的學生已經(jīng)知道三角形的內(nèi)角和是180度,但這種認識比較膚淺,不夠深刻。同時,他們已具備了一定的抽象思維能力,可

15、以在比較抽象的水平上認識圖形,進行探索。這部分內(nèi)容為了更好的發(fā)展學生的空間觀念,培養(yǎng)學生的各種能力,在呈現(xiàn)教學內(nèi)容時,不但重視體現(xiàn)知識形成的過程,而且注意留給學生充分進行自主探索和交流的空間,讓學生不停留于了解知識的表面,而注重于驗證知識的過程?,F(xiàn)狀1:教師創(chuàng)設情境要求學生小組驗證,讓學生在體驗中,尋找數(shù)學的真諦,此創(chuàng)設情境的方法真是妙哉。聽課時,我也為她這樣的設計感到高興,心想,一定能產(chǎn)生好的教學效果,但事實卻不是如此,學生一堂課顯得比較沉悶,特別是同學們用折角法驗證三角形的內(nèi)角和是不是平角時,只有部分好學生在迎合老師,學生并沒有充分的參與到數(shù)學學習中來。有些同學不知從何動手?學生用量算法時

16、,有些同學不會用量角器量角,造成數(shù)據(jù)偏大或偏少。 現(xiàn)狀2:學生都知道三角形的內(nèi)角和是180°。遇到直角三角形及等腰三角形求角的計算題時,學生只會用一種方法,有的同學甚至不會做。一、思考與實踐案例一 十多年前,曾經(jīng)聽過一堂三角形的內(nèi)角和的公開課,那時是五年級的教學內(nèi)容。事隔多年,具體的細節(jié)已淡忘,但是依稀記得大致的流程是:教師讓學生量出形狀各異的三角形的三個內(nèi)角的度數(shù),然后算出三個內(nèi)角的和,最后得出結論。    剖析教學中,大部分的學生得出的結果并不是180度。老師解釋說,這是因為量角產(chǎn)生了誤差,如果沒有誤差,應該是180度。學生似懂非懂,心存疑慮,為什么

17、偏偏是180度,而不是179度或181度呢?老師說180度就:180度吧。    感觸顯然,該流程中的學生是在教師的指令下量角,進行計算,不知道為什么是這樣做。得出的結論也是老師強加給學生的,是一種典型的“填鴨式”教學。學生只是知道了這個知識,沒有學到數(shù)學的方法,更沒有思維的提升。相反,在某種程度上,給學生一種誤解,數(shù)學的結論似乎可以模模糊糊,大致這樣就可以了。    案例二 今年,我也教學三角形的內(nèi)角和,是給四年級的孩子上的。過程如下:    新課伊始,復習三角板三個角的度數(shù),計算三角板三個角的內(nèi)角和,

18、得出“三角板三個角的內(nèi)角和是180度”。至此,我拋出問題:既然三角板三個內(nèi)角和是。180度,由此我們猜測,是不是(平時經(jīng)常在這方面注意訓練,培養(yǎng)學生的數(shù)學聯(lián)想的能力,因此我很有信心學生會產(chǎn)生自己的想法)    果然,一學生接過話匣說:是不是所有直角三角形的內(nèi)角和都是180度呢?我一怔,課前的預設是學生可能說“是不是所有的三角形的內(nèi)角和都是180度呢?”我一邊板書,一邊飛快地思考著,三角板是直角三角形,孩子這樣猜想,非常正確,比我的預設要嚴密得多了。得了,先解決直角三角形的內(nèi)角和再說。    再次把問題拋給學生:你們有什么辦法證明直角三

19、角形的內(nèi)角和是180度嗎?可獨立思考,亦可周圍的同學討論討論。    生1:一個正方形能分成兩個直角三角形,正方形的內(nèi)角和是360度,所以一個三角形的內(nèi)角和是180度。師:你說得對,可這是一種特殊的直角三角形。    生2:任何一個直角三角形都能和一個和它一樣的直角三角形拼成一個長方形,長方形的內(nèi)角和是360度,所以直角三角形的內(nèi)角和是180度。我心里不由暗暗佩服,這孩子的推理無懈可擊。還有很多孩子的手高高地舉在那里。    生3:只要證明兩個銳角的和是90度就行了。我向學生豎起大拇指。說:這個想法好,可

20、是怎么證明兩個銳角的和是90度呢。于是量一量,拼一拼的方法應運而生。接下去的教學就順理成章了。師:“既然直角三角形的內(nèi)角和是180度,由此我們猜測,是不是”,孩子有些激動了,“是不是銳角三角形的內(nèi)角和也是180度呢?”“是不是鈍角三角形的內(nèi)角和也是180度呢?”孩子們又用拼一拼、量一量的方法,得出了正確的結論。    剖析學生從計算三角板的內(nèi)角和是180度,猜測所有的直角三角形的內(nèi)角和是180度,驗證的方法又是多維的,或從正方形、長方形的內(nèi)角和推出直角三角形的內(nèi)角和,或證明兩個銳角的和是90度。受上面方法的啟發(fā),又用量一量、拼一拼的方法驗證鈍角三角形、銳角三角形的

21、內(nèi)角和是180度,把三個角拼成一個“平角”,較好地彌補了量一量所造成的誤差,得出的結論是比較可信的。    感觸通過猜測、驗證引導學生“層層剝筍”地探究新知,滲透了“由特殊到一般”的方法,孩子們自主得出了結論。驗證方法的多樣性不僅提高了結論的可靠性,也培養(yǎng)了學生的創(chuàng)新意識。    案例三 最近,去杭州聽了范新林老師上的這一堂課,他的教學過程給我留下了深刻印象。    在認識了內(nèi)角,復習了三角形按角的分類,回憶了一個三角形至少有兩個銳角后,教師問:想象一下,有沒有兩個直角、兩個鈍角、或一個直角一個鈍角的三角

22、形,也可以畫一畫。稍停片刻,出示:   得出要形成一個三角形,必須把角的邊往里靠,也就是兩個角的和要小于180度。教師說:“這就是我們學習的方法,先觀察思考,再得出結論”。當教師引導學生猜測三角形的內(nèi)角和是多少度,學生理所當然的想到了180度。    驗證開始了,學生首先想到的是“量”的方法,當然得出的結論只能是在180度左右。    師:用量的方法有誤差,只能說明在180度左右,同學們心中有疑團,是啊,如果我們計算的是航天飛機發(fā)射的角度能僅僅算出大約的角度嗎?接著學生想到的是用“拼”的辦法,把三個角撕下

23、來拼成一個“平角”。    師:既然是平角,你能確定下面肯定是一條直的線嗎?學生面面相覷,不敢確定。  師:用拼的方法也有誤差。  話音剛落,下面聽課發(fā)出了輕微的響聲,臉上流露出不可置相信的神情。相信他們和我一樣,不知道范老師的葫蘆賣的什么“藥”,明明是垂手可得的結論,竟然放棄了。還說拼的方法也有誤差,且看他這戲怎么唱下去。    繼續(xù)驗證!有學生提出把一個長方形對折,能證明直角三角形的內(nèi)角和是180度。師給予了肯定,并提出能否利用直角三角形的內(nèi)角和來推出銳角三角形與鈍角三角形的內(nèi)角和。課堂安靜下來,孩子們在思考。

24、教師作進一步的提示,能否把銳角三角形轉化成直角三角形。    “柳暗花明又一村”,問題迎刃而解了。    兩個直角三角形的內(nèi)角和是360度,減去兩個直角,余下的180度全是銳角三角形的內(nèi)角和。同理,鈍角三角形的內(nèi)角和,學生很快就自主得到了。    剖析 三角形的三個角能拼成一個平角,理論上說是對的。從成人的角度來說,我們能肯定那一定是一個平角,因為我們知道三角形的內(nèi)角和是180度,但是在孩子的眼里,看到的只是“近似”的直線。所以,當范老師說“拼”的方法也有誤差,聽課的老師在下面暗自否定這種想法的時候,孩子

25、們卻是頻頻點頭。接下的推理,是嚴密的,無懈可擊的,結論是孩子們信服的。    感觸 孩子有自己的眼光看數(shù)學,教師蹲下身子,和孩子站在同一視平線上,真正走入了孩子的心田。在范老師的課堂上,學生知其然也知其所以然,通過思辨引導學生多想一步,想深一步,體會到數(shù)學本身的邏輯性和嚴密性。學生在掌握知識的同時,領會了數(shù)學方法,感悟了數(shù)學思想,為今后的可持續(xù)發(fā)展奠定了堅實的基礎。    特級教師錢陽輝說過:“如果知識背后沒有方法,知識只能是一種沉重的負擔;如果方法背后沒有思想,方法只不過是一種笨拙的工具?!睌?shù)學教學要使學生學會數(shù)學地思維,這是數(shù)學教學要追求的境界,也是數(shù)學教學的本質要求。附教師簡介: 朱忠慧,女,現(xiàn)年43歲。大學專科畢業(yè),現(xiàn)為衡陽市石鼓區(qū)五家巷小學教師。參加工作以來,一直堅守在教育教學工作第一線。由于自己的刻苦努力,工作成績突出,為五家巷小學的教育教學質量的提高做出了卓越的貢獻。贏得了學校家長和社會的一致好評。教書育人,無私奉獻。我把自己的心血無私地奉獻給了自己鐘愛的教育事業(yè)。有事業(yè)心和責任心。我熱愛教育事業(yè),努力提高教學質量,千方百計地改進教學工作

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論