——大地水準(zhǔn)面的起伏和垂線偏差_第1頁(yè)
——大地水準(zhǔn)面的起伏和垂線偏差_第2頁(yè)
——大地水準(zhǔn)面的起伏和垂線偏差_第3頁(yè)
——大地水準(zhǔn)面的起伏和垂線偏差_第4頁(yè)
——大地水準(zhǔn)面的起伏和垂線偏差_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、第五章 大地水準(zhǔn)面的起伏和垂線偏差確定地面點(diǎn)在地球上的位置需要知道其三個(gè)坐標(biāo)通過(guò)天文觀測(cè)可以確定它的天文經(jīng)度、天文緯度兩個(gè)坐標(biāo)、通過(guò)重力測(cè)量和水準(zhǔn)測(cè)量可以確定第三個(gè)坐標(biāo)-正高;地面點(diǎn)的天文經(jīng)、緯度這兩個(gè)坐標(biāo)是以該點(diǎn)的重力矢量方向?yàn)橐罁?jù)的,而正高則從該點(diǎn)的大地水準(zhǔn)面起算。受地球內(nèi)部密度分布不規(guī)律的影響,重力矢量方向在地球中是雜亂無(wú)章的,同時(shí)大地水準(zhǔn)面也是一個(gè)不規(guī)則的曲面;地面各點(diǎn)的這三個(gè)可觀測(cè)坐標(biāo)是以重力矢量方向定向的局部坐標(biāo)架為根據(jù)的,它們之間難以進(jìn)行精確對(duì)比。為了克服這種局限,在大地測(cè)量中通常采用大地坐標(biāo)系;大地坐標(biāo)系是一種以中心置于地球質(zhì)心的參考橢球?yàn)橐罁?jù)的全球統(tǒng)一坐標(biāo)系,地面點(diǎn)相對(duì)參考橢

2、球的坐標(biāo)稱(chēng)為它的大地坐標(biāo),大地坐標(biāo)有三個(gè):大地經(jīng)度、大地緯度和大地高程。三個(gè)大地坐標(biāo)不能直接觀測(cè),它們與參考橢球的幾何參數(shù)和它在地球中的定位有關(guān);幾何參數(shù)合適的參考橢球選定并在地球中定位后,三個(gè)大地坐標(biāo)可以通過(guò)可觀測(cè)的三個(gè)坐標(biāo)(天文經(jīng)、緯度和正高)計(jì)算出來(lái);為此,需要知道大地水準(zhǔn)面的起伏和垂線偏差。本章給出如何根據(jù)混合重力異常計(jì)算大地水準(zhǔn)面起伏和垂線偏差的公式。5.1 自然坐標(biāo)和大地坐標(biāo)1.自然坐標(biāo)地球表面上的任一點(diǎn)的自然坐標(biāo)式以該點(diǎn)的重力方向?yàn)橐罁?jù)的,自然坐標(biāo)有三個(gè),它們式:天文精度、天文緯度和正高。圖式點(diǎn)的地面天球,地球的旋轉(zhuǎn)軸在空間的取向是固定的,點(diǎn)與地球旋轉(zhuǎn)軸的平行直線與天球交點(diǎn)稱(chēng)為點(diǎn)

3、地面天球的北極;過(guò)點(diǎn)作一條直線,沿著點(diǎn)重力矢量的反方向向上,它與點(diǎn)的地面天球相交與點(diǎn),稱(chēng)為點(diǎn)的天文天頂,平面稱(chēng)為點(diǎn)的天文子午面;過(guò)作一平面,令與格林尼治初始子午面平行,則稱(chēng)為點(diǎn)的初始天文子午面。點(diǎn)的天文緯度等于北天極在點(diǎn)的告訴,點(diǎn)的天文經(jīng)度等于點(diǎn)的地方恒星時(shí)與格林尼治地方恒星時(shí)的差;點(diǎn)的天文經(jīng)度和天文緯度這兩個(gè)天文坐標(biāo)可以通過(guò)在點(diǎn)的天文觀測(cè)測(cè)量出來(lái)。如圖所示,點(diǎn)的第三個(gè)坐標(biāo)式它的正高,它等于點(diǎn)沿垂線至帶地水準(zhǔn)面的距離,因?yàn)榈厍虻闹亓Φ任幻姹舜碎g不平行,從水準(zhǔn)原點(diǎn)開(kāi)始,通過(guò)水準(zhǔn)測(cè)量測(cè)出點(diǎn)至大地水準(zhǔn)面的高差與水準(zhǔn)測(cè)量的路徑有關(guān),它不等于點(diǎn)的正高,即有假若在水準(zhǔn)測(cè)量的路徑上同時(shí)進(jìn)行重力測(cè)量,考慮到根

4、據(jù)()式,有為地球在大地水準(zhǔn)面上的重力位。()式表明,通過(guò)水準(zhǔn)路徑上同時(shí)進(jìn)行水準(zhǔn)和重力測(cè)量可以測(cè)出點(diǎn)的重力位與大地水準(zhǔn)面上的重力位之間的差,因而有根據(jù)()式,點(diǎn)的正高為為、兩點(diǎn)間的平均重力。這樣,通過(guò)水準(zhǔn)測(cè)量和沿著水準(zhǔn)測(cè)量路徑上同時(shí)進(jìn)行重力測(cè)量,根據(jù)()式可以求出點(diǎn)的正高。2.大地坐標(biāo)如圖所示,選擇參數(shù)合適的參考橢球,將其中心置于地球的質(zhì)心,在全球地心直角坐標(biāo)系內(nèi),令參考橢球的極軸沿著地球的旋轉(zhuǎn)軸,位于赤道平面內(nèi),并令子午面為參考橢球的初始子午面;以這種參考橢球?yàn)榛緟⒖技艿淖鴺?biāo)系稱(chēng)為大地坐標(biāo)系,大地坐標(biāo)系式一種全球統(tǒng)一的地球坐標(biāo)系。地面上任一點(diǎn)的坐標(biāo)由它的大地緯度、大地經(jīng)度、大地高程三個(gè)大地

5、坐標(biāo)給出。用表示點(diǎn)沿該點(diǎn)正常重力方向在參考橢球面上的投影,則稱(chēng)為點(diǎn)的大地高程,而過(guò)點(diǎn)的參考橢球面法線,即該點(diǎn)的正常重力方向與赤道平面的夾角稱(chēng)為點(diǎn)的大地緯度,過(guò)點(diǎn)的子午面與初始子午面的夾角稱(chēng)為點(diǎn)的大地經(jīng)度,地面點(diǎn)的這三個(gè)大地坐標(biāo)不能直接觀測(cè)出來(lái),它們與參考橢球的參數(shù)有關(guān);當(dāng)參考橢球的參數(shù)選定并在地球內(nèi)部定位后,地面點(diǎn)的大地高程、大地經(jīng)度和大地緯度,可以根據(jù)可直接觀測(cè)的地面點(diǎn)的正高、天文經(jīng)度、天文緯度計(jì)算出來(lái)。5.2 擾動(dòng)位,大地水準(zhǔn)面的高度和垂線偏差地面上某點(diǎn)重力矢量方向與該點(diǎn)正常重力方向之間的夾角稱(chēng)為該點(diǎn)的垂線偏差;地球在空間任一點(diǎn)的重力位與正常場(chǎng)地球模型在該點(diǎn)產(chǎn)生的重力位的差稱(chēng)為地球在該點(diǎn)的

6、擾動(dòng)位,即地球與正常場(chǎng)地球模型的密度分布上的差異一方面產(chǎn)生擾動(dòng)位,另一方面使得大地水準(zhǔn)面相對(duì)參考橢球面發(fā)生起伏,同時(shí)產(chǎn)生垂線偏差。這樣,擾動(dòng)位、大地水準(zhǔn)面的起伏、垂線偏差都來(lái)源于地球與正常場(chǎng)地球模型內(nèi)部密度的分布不同。如圖所示,根據(jù)大地高程的定義,點(diǎn)的大地高程等于點(diǎn)的正高和點(diǎn)至參考橢球面的距離的和,即點(diǎn)至大地水準(zhǔn)面的高度與點(diǎn)的擾動(dòng)位有關(guān);事實(shí)上,大地水準(zhǔn)面上點(diǎn)的擾動(dòng)位等于大地水準(zhǔn)面上的重力位等于正常重力位,即,考慮到位于旋轉(zhuǎn)橢球面上,因而有將上式代入()式,有()式表明,大地水準(zhǔn)面上點(diǎn)的擾動(dòng)位實(shí)際上等于、兩點(diǎn)的正常重力位的差;根據(jù)()式,至參考橢球面的距離為其中為的正常重力,()式稱(chēng)為布隆斯(

7、Brunes)公式。如圖所示,由于擾動(dòng)位的存在,大地水準(zhǔn)面上的重力矢量與正常重力矢量不重合,大地水準(zhǔn)面上點(diǎn)重力矢量與正常重力矢量之間的夾角稱(chēng)為點(diǎn)的垂線偏差,即垂線偏差是一個(gè)矢量,它有偏差方向和大小。用、分別表示它的南北分量和東西分量,并約定地球的重力矢量的方向在正常重力矢量方向的西南方時(shí),即當(dāng)點(diǎn)的天文天頂在它的大地天頂東北時(shí),出現(xiàn)偏差的南北分量和東西分量為正。圖為點(diǎn)的地面天球,為它的北天極,、分別為它的天文天頂和大地天頂,則點(diǎn)的垂線偏差等于??紤]到天文緯度、大地緯度分別等于天文天頂和大地天頂?shù)教斐嗟赖木嚯x,并且天文經(jīng)度、大地經(jīng)度分別為點(diǎn)的天文子午圈、大地子午圈與初始子午圈的繳交,根據(jù)球面三角形

8、,有如圖所示,用表示地面上點(diǎn)在大地水準(zhǔn)面上的投影,為原點(diǎn)選在點(diǎn)的局部直角坐標(biāo)系,軸垂直向下沿著點(diǎn)的正常重力方向,沿著點(diǎn)的大地子午圈向北,向東;根據(jù)擾動(dòng)位的定義()式,點(diǎn)的重力位等于正常點(diǎn)的正常重力位與地球的擾動(dòng)位的和,在所選定局部直角坐標(biāo)系內(nèi),點(diǎn)的重力矢量為考慮到因而有根據(jù)垂線偏差矢量的定義()式以及()式,有其中,為點(diǎn)垂線偏差的南北分量向南為正,為點(diǎn)垂線偏差的東西分量向西為正。5.3 混合重力異常如圖所示,地面上任一點(diǎn)的重力值可以觀測(cè)出來(lái),通過(guò)適當(dāng)?shù)膿Q算,可以根據(jù)地面點(diǎn)的重力觀測(cè)值計(jì)算出與其點(diǎn)相對(duì)應(yīng)的大地水準(zhǔn)面上點(diǎn)的重力,假定為過(guò)點(diǎn)的正常重力矢量方向,為與參考橢球面的交點(diǎn),則點(diǎn)的重力與點(diǎn)的正

9、常重力之差稱(chēng)為的混合重力異常,即點(diǎn)的正常重力可以根據(jù)正常重力公式計(jì)算出來(lái),因而原則上可以認(rèn)為大地水準(zhǔn)面上的混合重力異常式已知的??紤]到其中為點(diǎn)重力矢量方向,為點(diǎn)的正常重力矢量方向。與、之間的夾角約為參考橢球的扁率量級(jí),準(zhǔn)確至參考橢球扁率量級(jí),可以把()式寫(xiě)成:將()式代入混合重力異常表達(dá)式()式,得根據(jù)()式以及()式,準(zhǔn)確至參考橢球扁率量級(jí)其中為參考橢球的平均半徑。將()式代入()式,并將其寫(xiě)成:()式、()式給出了大地水準(zhǔn)面的高度、垂線偏差與擾動(dòng)位的關(guān)系,所以若能根據(jù)大地水準(zhǔn)而上的已知的混合重力異常計(jì)算出擾動(dòng)位、則能根據(jù)上述二式計(jì)算出大地水準(zhǔn)面的高度和垂線偏差。正常場(chǎng)地球模型的極軸與地球的

10、旋轉(zhuǎn)軸重合,并且它們的旋轉(zhuǎn)角速度也相同、因而地球的離心力位與正常場(chǎng)地球模型的離心力位相同。所以地球的擾動(dòng)位等于地球的引力位和正常場(chǎng)地球模型的引力位的差,因此擾動(dòng)促在大地水準(zhǔn)面上及其外部空間滿足拉普拉斯方程。要想根據(jù)在大地水準(zhǔn)面上給定的混合重力異常計(jì)算出擾動(dòng)位,問(wèn)題就歸結(jié)為解擾動(dòng)位的拉普拉斯方程,使其滿足給定的邊界條件()式,即5.4 大地水準(zhǔn)面的高度,斯托克斯公式為了便于計(jì)算,斯托克斯對(duì)()式中的邊界做了簡(jiǎn)化,把大地水準(zhǔn)面邊界簡(jiǎn)化為半徑等于地球平均半徑的球面,這樣,()式變?yōu)槠渲?,為半徑等于的球面,此時(shí),由于這種邊界條件的簡(jiǎn)化,解滿足()式求得的擾動(dòng)位,其誤差約為地球扁率的量級(jí)。將半徑為的球面

11、上的擾動(dòng)位展成球面函數(shù),有其中為階球面函數(shù),因?yàn)榈厍虻馁|(zhì)量等于正常場(chǎng)地球模型的質(zhì)量,并且坐標(biāo)原點(diǎn)選在地球的質(zhì)心,所以()式中從2開(kāi)始,根據(jù)()式,地球外的擾動(dòng)位為將()式代入()式中的邊界條件,得將球面上給定的混合重力異常展成球面函數(shù),根據(jù)()式,有將()式代入()式,得將()式代入()式,得用表示稱(chēng)為廣義斯托克斯函數(shù)。將()式代入()式,得如圖所示,令,根據(jù)勒讓德多項(xiàng)式的生成函數(shù)()式,有將廣義斯托克斯函數(shù)()式寫(xiě)成根據(jù)()式,有而根據(jù)()式,有考慮到將()式代入()式右側(cè)的積分,得考慮到將上式代入()式,得將()式、()式代入()式,得出廣義斯托克斯函數(shù),它等于當(dāng),即當(dāng)時(shí),在半徑為的球面上

12、,有考慮到當(dāng)時(shí),有將()式代入()式,得出球面上的斯托克斯函數(shù),即球面上的斯托克斯函數(shù)的數(shù)值如表所示。將()式代入()式,得出根據(jù)球面上混合重力異常計(jì)算球面上的擾動(dòng)位的關(guān)系式,即將()式代入布隆斯公式()式,得出根據(jù)球面上的混合重力異常求大地水準(zhǔn)面高度的公式,即為地球的平均正常重力,()式稱(chēng)為計(jì)算大地水準(zhǔn)面高度的斯托克斯公式。該式表明,球面上任一點(diǎn)的大地水準(zhǔn)面的高度等于全球面上的混合重力異常與斯托克斯函數(shù)乘積在全球面上的積分,也就是說(shuō),要想根據(jù)斯托克斯公式()計(jì)算球面上任一點(diǎn)大地水準(zhǔn)面的高度,需要知道全球面上的混合重力異常。5.5 溫寧.曼乃茲(Vening Meinesz)垂線偏差公式根據(jù)大地水準(zhǔn)面上任一點(diǎn)的垂線偏差南北分量和東西分量與擾動(dòng)位之間的關(guān)系式()式,有其中,為地球的平均重力,、為以為坐標(biāo)原點(diǎn)的局部直角坐標(biāo)系的兩個(gè)水平坐標(biāo),軸垂直向下沿著點(diǎn)的正常重力方向,軸向北,軸向東,在根據(jù)混合重力異常計(jì)算擾動(dòng)位時(shí),為了便于計(jì)算,把邊界簡(jiǎn)化為半徑為的球面,在按照()式計(jì)算垂線

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論