




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、被完全誤解的三運放儀表放大器時間:2010-06-24 04:22:28 來源: 作者:Bonnie C. Baker德州儀器(TI) 圖1所示的三運放儀表放大器看似為一種簡單的結(jié)構(gòu),因為它使用已經(jīng)存在了幾十年的基本運算放大器(op amp)來獲得差動輸入信號。運算放大器的輸入失調(diào)電壓誤差不難理解。運算放大器開環(huán)增益的定義沒有改變。運算放大器共模抑制(CMR)的簡單方法自運算放大器時代之初就已經(jīng)有了。那么,問題出在哪里呢? 圖1:三運放儀表放大器,其VCM為共模電壓,而VDIFF為相同儀表放大器的差動輸入。單運算放大器和儀表放大器的共享CMR方程式如下: 本方程式中,G相當于系統(tǒng)增益,VCM為
2、相對于接地電壓同樣施加于系統(tǒng)輸入端的變化電壓,而VOUT為相對于變化VCM值的系統(tǒng)輸出電壓變化。 在CMR方面,運算放大器的內(nèi)部活動很簡單,其失調(diào)電壓變化是唯一的問題。就儀表放大器而言,有兩個影響器件CMR的因素。第一個也是最重要的因素是,涉及第三個放大器(圖1,A3)電阻比率的平衡問題。例如,如果R1等于R3,R2等于R4,則理想狀況下的三運放儀表放大器CMR為無窮大。然而,我們還是要回到現(xiàn)實世界中來,研究R1、R2、R3 和R4與儀表放大器CMR的關(guān)系。 具體而言,將R1:R2同R3:R4匹配至關(guān)重要。結(jié)合A3,這4個電阻從A1和A2的輸出減去并增益信號。電阻比之間的錯配會在A3輸出端形成
3、誤差。方程式2在這些電阻關(guān)系方面會形成CMR誤差: 例如,如果R1、R2、R3和R4接近相同值,且R3:R4等于R1/R2的1.001,則該0.1%錯配會帶來儀表放大器CMR的降低,從理想水平降至66dB級別。 根據(jù)方程式1,儀表放大器CMR隨系統(tǒng)增益的增加而增加。這是一個非常好的特性。方程式1可能會激發(fā)儀表放大器設(shè)計人員確保有許多可用增益,但是這種方法存在一定的局限性。A1和A2開環(huán)增益誤差和噪聲。放大器的開環(huán)增益等于20log(VOUT/VOS)。隨著A1和A2增益的增加,放大器開環(huán)增益失調(diào)誤差也隨之增加。A1和A2的輸出振幅變化一般涵蓋電源軌。儀表放大器增益更高的情況下,運算放大器的開環(huán)
4、增益誤差和噪聲占主導(dǎo)。通過RSS公式,這些誤差降低了更高增益下的儀表CMR。因此,您會看到儀表放大器的CMR性能值往往會在更高增益時達到最大值。 因此,從CMR角度來看,儀表放大器就像是一個在不同系統(tǒng)增益下器件各部分都誘發(fā)CMR誤差的系統(tǒng)。當您對器件的內(nèi)部原理進行研究時,它便不再如此神秘。您把各個部分都分開來,就會一目了然。實用噪聲放大器原理時間:2010-06-23 12:14:46 來源: 作者:IC的噪聲有兩種類型:一種是外部噪聲,來源于IC外部;另一種是內(nèi)部噪聲,來源于器件本身。外部噪聲一些工程師認為外部噪聲不應(yīng)該被稱為噪聲,因為它不是隨機產(chǎn)生的,使用“干擾”一詞也許更恰當。首先,簡單
5、談?wù)勅N外部噪聲的主要來源:RFI耦合環(huán)境中充斥著各種電磁波,雖然這些射頻干擾信號通常在目標帶寬以外,但器件的非線性有時會調(diào)整這些信號,將其帶入目標區(qū)域中。特別是連接傳感器的引線較長時,噪聲一般會從輸入引線進入電路。抑制射頻干擾的辦法包括:輸入端濾波、屏蔽和采用雙絞線輸入。電源噪聲電子電路抑制電源線信號的能力有限,尤其是頻率較高時,因此必須先消除電源線上的高頻干擾,使其無法到達低噪聲電路??梢詫﹄娫催M行適當濾波以及IC本身采取良好的旁路措施來實現(xiàn)。敏感模擬電路與數(shù)字邏輯應(yīng)采用不同的電源,至少應(yīng)深度濾波。接地環(huán)路我們經(jīng)??梢詮脑韴D上看到很多的接地符號,但必須注意,在實際電路中任何兩點的電位都不
6、可能完全相等,電流會流經(jīng)地線,從而產(chǎn)生電位差。必須考慮電流如何流動,并將高電流路徑與敏感電路隔離。例如,實用新型接地配置,或者將模擬地層與數(shù)字地層接在一個點上。內(nèi)部噪聲內(nèi)部噪聲來源于信號鏈中的電路元件,IC數(shù)據(jù)手冊中相關(guān)的性能規(guī)格就是針對這種噪聲。典型的內(nèi)部噪聲源包括傳感器、電阻、放大器和模數(shù)轉(zhuǎn)換器。電阻噪聲電阻噪聲分為兩類:一是內(nèi)部熱噪聲,這種噪聲與電阻構(gòu)造無關(guān),僅取決于總電阻、溫度和帶寬,它與所施加的信號無關(guān);二是附加電流噪聲,通常被稱為過量噪聲,它取決于電阻的構(gòu)造,與熱噪聲不同,電阻電流噪聲與所施加的電壓有關(guān)。薄膜電阻和繞線電阻具有出色的電流噪聲性能,其噪聲主要是內(nèi)部熱噪聲。炭核電阻則不
7、然,一般認為其噪聲性能較差,在之后的討論中我們將假設(shè)在低噪聲設(shè)計中使用高質(zhì)量薄膜電阻,因此可以忽略電流噪聲,只專注于熱噪聲。理想電阻的熱噪聲公式為:可以看出,熱噪聲取決于溫度、電阻、帶寬和波爾茲曼常數(shù)。但在實際設(shè)計中,并不要求記住這個公式,因為我們有一個非常方便的速算法。討論噪聲時,平方根符號會一再出現(xiàn),公式中含有一個常數(shù)項,即波爾茲曼常數(shù)k。第二項是溫度,請注意,噪聲隨溫度升高而增大,此溫度的單位為k,因此溫度對噪聲的影響可能不如想象那般大。多數(shù)工程師會忽略溫度對噪聲的影響,請記住你所看到的噪聲規(guī)格僅針對室溫有效。第三項是電阻值,最后一項是帶寬。應(yīng)該記住這個公式,1k電阻在室溫下的熱噪聲為,
8、即無論從事何種噪聲相關(guān)工作,這一算式都將使您永遠受益。這個速算公式可以方便地應(yīng)用于其他電阻值。放大器噪聲圖1所示為放大器噪聲模型。放大器噪聲分為兩類:一種是電壓噪聲(VX),另一種是電流噪聲(IX)。在實際電路中,放大器由許多晶體管組成,所有這些晶體管都有噪聲。幸運的是,所有晶體管的噪聲都可以折合到放大器的輸入端。圖1 放大器噪聲模型電壓噪聲規(guī)格在數(shù)據(jù)手冊中,通常以兩種方式表示,分別是和。查看數(shù)據(jù)手冊中的噪聲特性時,必須了解它是被折合到輸入端還是輸出端。大部分放大器的噪聲特性被折合到輸入端,對于運算放大器數(shù)據(jù)手冊,這幾乎是默認的習(xí)慣算法。但對于其他類型的固定增益放大器(如差動放大器),噪聲可能
9、被折合到輸出端。請注意,這種輸入噪聲會被放大器放大。例如,對于同相增益為10的放大器,輸出端的噪聲將是指標中給出的噪聲的10倍。一些電路配置的噪聲增益可能大于信號增益,反相配置就是一個很好的例子。信號增益為-1的反相配置,其噪聲增益實際上為2。為了確定實際噪聲增益,請將所有外部電壓源短路,同時可以將噪聲放大器的RTI噪聲看做出現(xiàn)在放大器正輸入端的噪聲,如果以這一假設(shè)分析電路,應(yīng)當能夠確定噪聲所接受的增益。儀表放大器的噪聲特性與運算放大器稍有不同,對于運算放大器,所有內(nèi)部晶體管噪聲都可以折合到輸入端,換言之,所有噪聲源都會按增益比例縮放。儀表放大器則不然,電路中的一些噪聲會按增益比例進行縮放,其
10、他噪聲則與增益無關(guān),這里與增益噪聲相關(guān)的噪聲量顯示為eNI,與增益無關(guān)的噪聲量顯示為eNO。數(shù)據(jù)手冊中有二者關(guān)系公式。除電壓噪聲外,放大器還具有電流噪聲。如果輸入端有電阻,電流噪聲將與之相互作用,產(chǎn)生電壓噪聲。譬如,大多數(shù)源電壓具有一定的電阻。畢竟,將高阻抗信號源轉(zhuǎn)換為低阻抗信號源是使用運算放大器的原因之一。電流噪聲流經(jīng)與放大器相連的電阻,產(chǎn)生電壓噪聲。一般來說,放大器的輸入偏置電流越高,則電流噪聲越高。圖2顯示具有一定源電阻的電壓跟隨器配置,運算放大器的電流噪聲會與信號源電阻相互作用,在輸出端產(chǎn)生一定的額外噪聲。圖3顯示反饋路徑中的電阻如何與電流噪聲相互作用,電流噪聲流經(jīng)反饋電阻的并聯(lián)組合,
11、在輸入端產(chǎn)生一個額外噪聲源,然后此噪聲源經(jīng)放大器放大到達輸出端。圖2 具有一定源電阻的電壓跟隨器配置圖3 反饋路徑中電阻與電流噪聲的相互作用模數(shù)轉(zhuǎn)換器(ADC)噪聲有時候模數(shù)轉(zhuǎn)換器(ADC)數(shù)據(jù)手冊以Vrms或VP-P的形式提供噪聲特性,但大多數(shù)情況下,該特性用噪聲相對于ADC最大滿量程的關(guān)系來表示,規(guī)定為信噪比(SNR)。數(shù)據(jù)手冊中的噪聲指標,偶爾也包括失真特性及信納比。緊急情況下,可以使用文中提供的理想公式,但這是理論限值,永遠比實際值要好。這里的公式顯示ADC的SNR數(shù)值與Vrms數(shù)值之間的換算關(guān)系,以便比較ADC與放大器的噪聲。有一點必須注意,要確保使用ADC最大輸入范圍內(nèi)的均方根噪聲
12、。峰峰值噪聲和RMS噪聲峰峰值噪聲Vrms指波形中波峰與波谷點之間的距離,它僅取決于兩個點,有利也有弊。有利的一面是非常容易計算,只需將最大點減去最小點;不利的一面是復(fù)驗性不強,不太精確。噪聲是一個隨機過程,因此,這種測量實際上依賴于噪聲波形的極值。采集數(shù)據(jù)的時間越長,則越有可能獲得極值。均方根值噪聲使用波形中的所有點,比峰峰值噪聲精確得多,測量的點越多,均方根數(shù)值越精確。不利的一面是,由于要使用所有點,因此計算時間較長。關(guān)于峰峰值和均方根值測量有一點需要注意,它們會隨帶寬發(fā)生較大變化,對于同一放大器,帶寬越低,噪聲也越低。圖4清楚顯示了這一點。實驗中,我們測量了儀表放大器AD8222在多個不
13、同帶寬時的噪聲,可以清楚的看到帶寬對于噪聲的影響之大。帶寬每提高十倍,噪聲增加三倍。由于這些測量依賴于帶寬,因此有幾點需要注意:首先,需要了解電路的帶寬特性,需要確保測量儀器的帶寬高于電路的帶寬,只有這樣,才能獲得精確的讀數(shù)。此外,使用數(shù)字萬用表時,規(guī)定均方根值噪聲或峰峰值噪聲時,同時必須明確特定的帶寬。對于絕大多數(shù)數(shù)據(jù)手冊,帶寬為0.1Hz至10Hz頻帶。圖4 AD8222在多個不同帶寬時的噪聲頻譜密度圖使均方根測量更進一步,它實際上是將噪聲測量分為不同的區(qū)間,這樣便可以明確哪些頻率具有較多的噪聲成分。圖5來自AD8295數(shù)據(jù)手冊,顯示了許多測量的平均組合值。由于頻譜密度圖將測量分為許多區(qū)間
14、,因此需要大量的數(shù)據(jù)才能獲得一張清晰的圖。圖5 AD8295的頻譜密度圖在較低頻率時,大多數(shù)放大器的噪聲曲線會斜升,噪聲密度與頻率成反比,因此將它稱為1/f噪聲。如果沿1/f斜率畫一條直線,與水平噪聲線相交,就可以得到1/f轉(zhuǎn)折頻率。噪聲計算噪聲的加法規(guī)則為噪聲的平方和,假設(shè)噪聲源不相關(guān),這一假設(shè)在絕大多數(shù)情況下是成立的,噪聲的乘法和除法規(guī)則與一般信號相同。第一,在噪聲計算時,有幾點需要注意:室溫下,1k電阻對應(yīng)于的噪聲,這一速算公式可以方便地應(yīng)用于其他電阻值,只需乘以電阻的平方根。第二,在對信號源求和時,可以忽略較小的項。噪聲加法規(guī)則為平方和,如果一個噪聲信號只有主導(dǎo)噪聲信號的1/5,則其貢
15、獻的額外噪聲只有1/25。第三點是對第一點的擴展,如果第一增益級的增益足夠大,則可以忽略其后的一切噪聲。低噪聲系統(tǒng)的設(shè)計技巧低噪聲系統(tǒng)設(shè)計的第一個竅門是在前級應(yīng)用中盡可能多的增益,圖6顯示的是一個放大器前端的兩個例子,增益為10??梢钥闯觯瑢⑺性鲆鎽?yīng)用于第一級,比將增益分布于兩級要好得多。請注意,有時最佳帶寬性能的要求可能與最佳噪聲性能的要求相沖突。對于帶寬,我們希望每個增益級具有近似的增益,而對于噪聲,我們則希望第一級具有全部的增益。圖6 放大器前端第二個竅門是注意源阻抗。這樣做有兩個原因:第一,源阻抗越大,則系統(tǒng)噪聲越大;第二,放大器必須與源阻抗匹配良好,如果源阻抗較高,電流噪聲噪聲特性
16、可能比電壓噪聲特性更重要。第三個竅門是要注意反饋電阻,如果選擇超低噪聲運算放大器,卻使用很大的反饋電阻,則不可能實現(xiàn)低噪聲電路,在同相(圖7)或反相配置中,注意反饋電阻相當于折合到輸出端的噪聲源。而其他電阻則相當于輸入端的電壓源,更準確的說,是反相配置輸入端的電壓源。前文已經(jīng)談到,設(shè)計低噪聲系統(tǒng)時,第一級應(yīng)用有高增益,這種情況下Rg噪聲占主導(dǎo)地位。圖7 同相運算放大器的噪聲模型差動放大器構(gòu)成精密電流源的核心 時間:2010-06-23 10:52:22 來源: 作者:趙延輝、Reem Malik、廖文帥許多應(yīng)用利用精密電流源提供恒定電流,包括工業(yè)過程控制、儀器儀表、醫(yī)療設(shè)備和消費電子產(chǎn)品。例如
17、,過程控制系統(tǒng)利用電流源提供電阻溫度檢測器(RTD)所需的激勵電流;數(shù)字萬用表利用電流源測量未知電阻、電容和二極管;長距離信息傳輸廣泛使用電流源來驅(qū)動4mA至20mA電流環(huán)路。圖1 差動放大器和運算放大器構(gòu)成精密電流源精密電流源傳統(tǒng)上采用運算放大器、電阻和其它分立器件構(gòu)建,但存在尺寸、精度和溫度漂移等方面的不足?,F(xiàn)在,高精度、低功耗、低成本集成差動放大器(例如AD8276)的出現(xiàn),使得尺寸更小、性能更高的電流源變成現(xiàn)實,如圖1所示。反饋緩沖器使用低失調(diào)、低偏置電流放大器,例如AD8538、AD8603、AD8605、AD8628、AD8655、AD8661、AD8663、OP177或OP117
18、7,具體取決于所需電流范圍。輸出電流可以通過下式計算:最大輸出電流受以下因素限制:運算放大器輸入范圍、差動放大器輸出范圍以及差動放大器SENSE引腳電壓范圍。必須滿足下列三個條件: SENSE引腳可以耐受幾乎為電源兩倍的電壓,因此第二個限制條件相當寬松。2.5V至36V的寬電源電壓范圍使得AD8276成為許多應(yīng)用的理想之選。A級和B級的最大增益誤差分別為0.05%和0.02%,因此電流源精度最高可達0.02%。配置變化對于可以接受稍大誤差的低成本應(yīng)用,可以移除反饋緩沖器以簡化電路,如圖2所示。圖2 去掉反饋放大器的簡化電路如果所需輸出電流小于AD8276的輸出能力15 mA,則可去掉升壓晶體管,如圖3所示。如果低電流和降低精度均能接受,則可采用更為簡單的低成本配置,如圖4所示。圖3 針對低電流應(yīng)用的簡化電路圖4 針對低成本、低電流應(yīng)用的簡化電路圖5所示的拓撲結(jié)構(gòu)可以用于高電流、高精度應(yīng)用,運算放大器輸入范圍無限制。圖5 差動放大器和匹配電阻構(gòu)成精密電流源外部電阻R1和R2應(yīng)具有超高精度和匹配度,否則輸出電流將隨負載而變化,由此產(chǎn)生的誤差無法通過軟件來校正。外圍器件 輸入電壓VREF可以是DAC輸出、基準電壓源或傳感器輸出。如果需要可編程電流源,推薦使用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司沙龍diy蛋糕活動方案
- 公司組團戶外活動方案
- 公司法律宣傳月活動方案
- 公司游泳池活動方案
- 公司登高運動策劃方案
- 公司約客活動策劃方案
- 公司更名征集活動方案
- 公司春節(jié)福利活動方案
- 公司消?;顒硬邉澐桨?/a>
- 公司深圳一日游活動方案
- 學(xué)生個人檔案表
- 房建項目施工階段商務(wù)策劃管理
- 專利挖掘與技術(shù)交底書撰寫
- 附件四維性格測試表你的顏色
- 《寶葫蘆的秘密》作業(yè)設(shè)計
- 中式面點技師、高級技師理論參考的試題(完整版)實用資料
- 全國社保行政區(qū)域劃分代碼
- GB/T 32892-2016光伏發(fā)電系統(tǒng)模型及參數(shù)測試規(guī)程
- 抹灰施工工藝培訓(xùn)課件
- 部編人教版六年級下冊語文 第六單元素養(yǎng)提升卷 優(yōu)質(zhì)試題課件
- 集團公司落實子企業(yè)董事會職權(quán)工作方案
評論
0/150
提交評論