隨機(jī)變量與數(shù)字特征_第1頁
隨機(jī)變量與數(shù)字特征_第2頁
隨機(jī)變量與數(shù)字特征_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、第8章 隨機(jī)變量與數(shù)字特征 本章重點(diǎn): 1.理解或了解一些基本概念具體要求: 了解離散型和連續(xù)型隨機(jī)變量的定義及其概率分布的性質(zhì);如 了解二項(xiàng)分布、泊松分布的概率分布列或密度,記住它們的期望與方差,會計(jì)算二項(xiàng)分布的概率; 了解均勻分布; (4) 理解正態(tài)分布、標(biāo)準(zhǔn)正態(tài)分布,記住其期望與方差; 若隨機(jī)變量,則X服從正態(tài)分布,其期望是,方差是; 若隨機(jī)變量,則X服從標(biāo)準(zhǔn)正態(tài)分布,其期望是0,方差是1. (5) 了解隨機(jī)變量的期望和方差的概念及性質(zhì)如期望的概念期望的性質(zhì): 方差的概念方差的性質(zhì): 例1 設(shè)隨機(jī)變量服從二項(xiàng)分布,則() AB CD解 根據(jù)教材第8章中給出的二項(xiàng)分布的期望是,方差是。所以

2、,正確的選項(xiàng)是B 例2 設(shè)隨機(jī)變量X的方差D (X)=1,則D (2X+3)=( )A 2 B 1 C1 D4 解 根據(jù)方差的性質(zhì)可知D(2X+3)=(2)2D(X) = 4故正確的選項(xiàng)是D例3 設(shè)隨機(jī)變量X N (m,s 2)若s 變大,概率將會( )A單調(diào)減少 B單調(diào)增加 C保持不變 D增減不定解 由于而,故概率并不隨s 變大而改變,因此,正確的選項(xiàng)是C 例4設(shè)隨機(jī)變量X服從二點(diǎn)分布,即那么E (2X 2 +1) =( )解 因?yàn)?E (2X 2 +1) =2 E (X 2 )1,且E(X 2 )0×p1×q q所以,E (2X 2 +1 )2q +1 2熟練掌握一般正態(tài)分布的概率計(jì)算問題;掌握隨機(jī)變量期望和方差的計(jì)算方法 設(shè),則X,Y之間的關(guān)系為標(biāo)準(zhǔn)正態(tài)分布的概率計(jì)算公式為一般正態(tài)分布的概率計(jì)算公式為 例5 設(shè)隨機(jī)變量,求解 因?yàn)?,故所以(查教材中的附表) 例6 設(shè)隨機(jī)變量X的密度函數(shù)是求 (1) 常數(shù)a; (2 ) P(X < 2.5 )解 (1) 根據(jù)密度函數(shù)的性質(zhì)1=1(a2)3 所以a=2(2) P (X < 2.5 ) = = 例

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論