單片機精確延時_第1頁
單片機精確延時_第2頁
單片機精確延時_第3頁
單片機精確延時_第4頁
單片機精確延時_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、單片機因具有體積小、功能強、成本低以及便于實現(xiàn)分布式控制而有非常廣泛的應用領域1。單片機開發(fā)者在編制各種應用程序時經(jīng)常會遇到實現(xiàn)精確延時的問題,比如按鍵去抖、數(shù)據(jù)傳輸?shù)炔僮鞫家诔绦蛑胁迦胍欢位驇锥窝訒r,時間從幾十微秒到幾秒。有時還要求有很高的精度,如使用單總線芯片DS18B20時,允許誤差范圍在十幾微秒以內2,否則,芯片無法工作。用51匯編語言寫程序時,這種問題很容易得到解決,而目前開發(fā)嵌入式系統(tǒng)軟件的主流工具為C語言,用C51寫延時程序時需要一些技巧3。因此,在多年單片機開發(fā)經(jīng)驗的基礎上,介紹幾種實用的編制精確延時程序和計算程序執(zhí)行時間的方法。實現(xiàn)延時通常有兩種方法:一種是硬件延時,要用到

2、定時器/計數(shù)器,這種方法可以提高CPU的工作效率,也能做到精確延時;另一種是軟件延時,這種方法主要采用循環(huán)體進行。1  使用定時器/計數(shù)器實現(xiàn)精確延時單片機系統(tǒng)一般常選用11.059 2 MHz、12 MHz或6 MHz晶振。第一種更容易產(chǎn)生各種標準的波特率,后兩種的一個機器周期分別為1 s和2 s,便于精確延時。本程序中假設使用頻率為12 MHz的晶振。最長的延時時間可達216=65 536 s。若定時器工作在方式2,則可實現(xiàn)極短時間的精確延時;如使用其他定時方式,則要考慮重裝定時初值的時間(重裝定時器初值占用2個機器周期)。在實際應用中,定時常采用中斷方式,如進行適當?shù)难h(huán)可實現(xiàn)

3、幾秒甚至更長時間的延時。使用定時器/計數(shù)器延時從程序的執(zhí)行效率和穩(wěn)定性兩方面考慮都是最佳的方案。但應該注意,C51編寫的中斷服務程序編譯后會自動加上PUSH ACC、PUSH PSW、POP PSW和POP ACC語句,執(zhí)行時占用了4個機器周期;如程序中還有計數(shù)值加1語句,則又會占用1個機器周期。這些語句所消耗的時間在計算定時初值時要考慮進去,從初值中減去以達到最小誤差的目的。2  軟件延時與時間計算在很多情況下,定時器/計數(shù)器經(jīng)常被用作其他用途,這時候就只能用軟件方法延時。下面介紹幾種軟件延時的方法。2.1  短暫延時可以在C文件中通過使用帶_NOP_( )語句的函數(shù)實現(xiàn)

4、,定義一系列不同的延時函數(shù),如Delay10us( )、Delay25us( )、Delay40us( )等存放在一個自定義的C文件中,需要時在主程序中直接調用。如延時10 s的延時函數(shù)可編寫如下:void Delay10us( ) _NOP_( );_NOP_( );_NOP_( );_NOP_( );_NOP_( );_NOP_( );Delay10us( )函數(shù)中共用了6個_NOP_( )語句,每個語句執(zhí)行時間為1 s。主函數(shù)調用Delay10us( )時,先執(zhí)行一個LCALL指令(2 s),然后執(zhí)行6個_NOP_( )語句(6 s),最后執(zhí)行了一個RET指令(2 s),所以執(zhí)行上述函數(shù)

5、時共需要10 s??梢园堰@一函數(shù)當作基本延時函數(shù),在其他函數(shù)中調用,即嵌套調用4,以實現(xiàn)較長時間的延時;但需要注意,如在Delay40us( )中直接調用4次Delay10us( )函數(shù),得到的延時時間將是42 s,而不是40 s。這是因為執(zhí)行Delay40us( )時,先執(zhí)行了一次LCALL指令(2 s),然后開始執(zhí)行第一個Delay10us( ),執(zhí)行完最后一個Delay10us( )時,直接返回到主程序。依此類推,如果是兩層嵌套調用,如在Delay80us( )中兩次調用Delay40us( ),則也要先執(zhí)行一次LCALL指令(2 s),然后執(zhí)行兩次Delay40us( )函數(shù)(84 s

6、),所以,實際延時時間為86 s。簡言之,只有最內層的函數(shù)執(zhí)行RET指令。該指令直接返回到上級函數(shù)或主函數(shù)。如在Delay80s( )中直接調用8次Delay10us( ),此時的延時時間為82 s。通過修改基本延時函數(shù)和適當?shù)慕M合調用,上述方法可以實現(xiàn)不同時間的延時。2.2  在C51中嵌套匯編程序段實現(xiàn)延時在C51中通過預處理指令#pragma asm和#pragma endasm可以嵌套匯編語言語句。用戶編寫的匯編語言緊跟在#pragma asm之后,在#pragma endasm之前結束。如:#pragma asm匯編語言程序段#pragma endasm延時函數(shù)可設置入口參

7、數(shù),可將參數(shù)定義為unsigned char、int或long型。根據(jù)參數(shù)與返回值的傳遞規(guī)則,這時參數(shù)和函數(shù)返回值位于R7、R7R6、R7R6R5中。在應用時應注意以下幾點: #pragma asm、#pragma endasm不允許嵌套使用; 在程序的開頭應加上預處理指令#pragma asm,在該指令之前只能有注釋或其他預處理指令; 當使用asm語句時,編譯系統(tǒng)并不輸出目標模塊,而只輸出匯編源文件; asm只能用小寫字母,如果把asm寫成大寫,編譯系統(tǒng)就把它作為普通變量; #pragma asm、#pragma endasm和 asm只能在函數(shù)內使用。將匯編語言與C51結合起來,充分發(fā)揮各

8、自的優(yōu)勢,無疑是單片機開發(fā)人員的最佳選擇。2.3  使用示波器確定延時時間熟悉硬件的開發(fā)人員,也可以利用示波器來測定延時程序執(zhí)行時間。方法如下:編寫一個實現(xiàn)延時的函數(shù),在該函數(shù)的開始置某個I/O口線如P1.0為高電平,在函數(shù)的最后清P1.0為低電平。在主程序中循環(huán)調用該延時函數(shù),通過示波器測量P1.0引腳上的高電平時間即可確定延時函數(shù)的執(zhí)行時間。方法如下:sbit T_point = P10;void Dly1ms(void) unsigned int i,j;while (1) T_point = 1;for(i=0;i<2;i+)for(j=0;j<124;j+);T

9、_point = 0;for(i=0;i<1;i+)for(j=0;j<124;j+);void main (void) Dly1ms();把P1.0接入示波器,運行上面的程序,可以看到P1.0輸出的波形為周期是3 ms的方波。其中,高電平為2 ms,低電平為1 ms,即for循環(huán)結構“for(j=0;j<124;j+) ;”的執(zhí)行時間為1 ms。通過改變循環(huán)次數(shù),可得到不同時間的延時。當然,也可以不用for循環(huán)而用別的語句實現(xiàn)延時。這里討論的只是確定延時的方法。2.4  使用反匯編工具計算延時時間對于不熟悉示波器的開發(fā)人員可用Keil C51中的反匯編工具計算延時

10、時間,在反匯編窗口中可用源程序和匯編程序的混合代碼或匯編代碼顯示目標應用程序。為了說明這種方法,還使用“for (i=0;i<DlyT;i+) ;”。在程序中加入這一循環(huán)結構,首先選擇build taget,然后單擊start/stop debug session按鈕進入程序調試窗口,最后打開Disassembly window,找出與這部分循環(huán)結構相對應的匯編代碼,具體如下:C:0x000FE4CLRA/1TC:0x0010FEMOVR6,A/1TC:0x0011EEMOVA,R6/1TC:0x0012C3CLRC/1TC:0x00139FSUBBA,DlyT /1TC:0x00145

11、003JNCC:0019/2TC:0x00160E INCR6/1TC:0x001780F8SJMPC:0011/2T可以看出,0x000F0x0017一共8條語句,分析語句可以發(fā)現(xiàn)并不是每條語句都執(zhí)行DlyT次。核心循環(huán)只有0x00110x0017共6條語句,總共8個機器周期,第1次循環(huán)先執(zhí)行“CLR A”和“MOV R6,A”兩條語句,需要2個機器周期,每循環(huán)1次需要8個機器周期,但最后1次循環(huán)需要5個機器周期。DlyT次核心循環(huán)語句消耗(2+DlyT×8+5)個機器周期,當系統(tǒng)采用12 MHz時,精度為7 s。當采用while (DlyT-)循環(huán)體時,DlyT的值存放在R7中。

12、相對應的匯編代碼如下:C:0x000FAE07MOVR6, R7/1TC:0x00111F DECR7/1TC:0x0012EE MOVA,R6/1TC:0x001370FAJNZC:000F/2T循環(huán)語句執(zhí)行的時間為(DlyT+1)×5個機器周期,即這種循環(huán)結構的延時精度為5 s。通過實驗發(fā)現(xiàn),如將while (DlyT-)改為while (-DlyT),經(jīng)過反匯編后得到如下代碼:C:0x0014DFFE DJNZR7,C:0014/2T可以看出,這時代碼只有1句,共占用2個機器周期,精度達到2 s,循環(huán)體耗時DlyT×2個機器周期;但這時應該注意,DlyT初始值不能為0

13、。這3種循環(huán)結構的延時與循環(huán)次數(shù)的關系如表1所列。表1  循環(huán)次數(shù)與延時時間關系單位:s注意:計算時間時還應加上函數(shù)調用和函數(shù)返回各2個機器周期時間。2.5  使用性能分析器計算延時時間很多C程序員可能對匯編語言不太熟悉,特別是每個指令執(zhí)行的時間是很難記憶的,因此,再給出一種使用Keil C51的性能分析器計算延時時間的方法。這里還以前面介紹的for (i=0;i<124;i+)結構為例。使用這種方法時,必須先設置系統(tǒng)所用的晶振頻率,選擇Options for target中的target選項,在Xtal(MHz)中填入所用晶振的頻率。將程序編譯后,分別在_

14、point = 1和T_point = 0處設置兩個運行斷點。選擇start/stop debug session按鈕進入程序調試窗口,分別打開Performance Analyzer window和Disassembly window。運行程序前,要首先將程序復位,計時器清零;然后按F5鍵運行程序,從程序效率評估窗口的下部分可以看到程序到了第一個斷點,也就是所要算的程序段的開始處,用了389 s;再按F5鍵,程序到了第2個斷點處也就是所要算的程序段的結束處,此時時間為1 386 s。最后用結束處的時間減去開始處時間,就得到循環(huán)程序段所占用的時間為997 s。當然也可以不用打開Performance Analyzer window,這時觀察左邊工具欄秒(SEC)項。全速運行時,時間不變,只有當程序運行到斷點處,才顯示運行所用的時間。3  總結本文介紹了多種實現(xiàn)并計算延時程序執(zhí)行時間的方法。使用定時器

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論