等比數(shù)列復(fù)習(xí)教案_第1頁(yè)
等比數(shù)列復(fù)習(xí)教案_第2頁(yè)
等比數(shù)列復(fù)習(xí)教案_第3頁(yè)
等比數(shù)列復(fù)習(xí)教案_第4頁(yè)
等比數(shù)列復(fù)習(xí)教案_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、等比數(shù)列【要點(diǎn)精講】1等比數(shù)列定義一般地,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等比數(shù)列,這個(gè)常數(shù)叫做等比數(shù)列的公比;公比通常用字母表示,即:數(shù)列對(duì)于數(shù)列(1)(2)(3)都是等比數(shù)列,它們的公比依次是2,5,。(注意:“從第二項(xiàng)起”、“常數(shù)”、等比數(shù)列的公比和項(xiàng)都不為零)2等比數(shù)列通項(xiàng)公式為:。說(shuō)明:(1)由等比數(shù)列的通項(xiàng)公式可以知道:當(dāng)公比時(shí)該數(shù)列既是等比數(shù)列也是等差數(shù)列;(2)等比數(shù)列的通項(xiàng)公式知:若為等比數(shù)列,則。3等比中項(xiàng)如果在中間插入一個(gè)數(shù),使成等比數(shù)列,那么叫做的等比中項(xiàng)(兩個(gè)符號(hào)相同的非零實(shí)數(shù),都有兩個(gè)等比中項(xiàng)) G2ab,G±

2、;;4等比數(shù)列前n項(xiàng)和公式一般地,設(shè)等比數(shù)列的前n項(xiàng)和是,當(dāng)時(shí), 或;當(dāng)q=1時(shí),(錯(cuò)位相減法)。說(shuō)明:(1)和各已知三個(gè)可求第四個(gè);(2)注意求和公式中是,通項(xiàng)公式中是不要混淆;(3)應(yīng)用求和公式時(shí),必要時(shí)應(yīng)討論的情況。4等比數(shù)列的判定方法定義法:對(duì)于數(shù)列,若,則數(shù)列是等比數(shù)列;等比中項(xiàng):對(duì)于數(shù)列,若,則數(shù)列是等比數(shù)列5等比數(shù)列的性質(zhì)等比數(shù)列任意兩項(xiàng)間的關(guān)系:如果是等比數(shù)列的第項(xiàng),是等差數(shù)列的第項(xiàng),且,公比為,則有;對(duì)于等比數(shù)列,若,則,也就是:。若數(shù)列是等比數(shù)列,是其前n項(xiàng)的和,那么,成等比數(shù)列【典例解析】題型1:等比數(shù)列的概念例1“公差為0的等差數(shù)列是等比數(shù)列”;“公比為的等比數(shù)列一定是

3、遞減數(shù)列”;“a,b,c三數(shù)成等比數(shù)列的充要條件是b2=ac”;“a,b,c三數(shù)成等差數(shù)列的充要條件是2b=a+c”,以上四個(gè)命題中,正確的有( )A1個(gè) B2個(gè) C3個(gè) D4個(gè)解析:四個(gè)命題中只有最后一個(gè)是真命題。命題1中未考慮各項(xiàng)都為0的等差數(shù)列不是等比數(shù)列;命題2中可知an+1=an×,an+1<an未必成立,當(dāng)首項(xiàng)a1<0時(shí),an<0,則an>an,即an+1>an,此時(shí)該數(shù)列為遞增數(shù)列;命題3中,若a=b=0,cR,此時(shí)有,但數(shù)列a,b,c不是等比數(shù)列,所以應(yīng)是必要而不充分條件,若將條件改為b=,則成為不必要也不充分條件。點(diǎn)評(píng):該題通過(guò)一些選擇

4、題的形式考察了有關(guān)等比數(shù)列的一些重要結(jié)論,為此我們要注意一些有關(guān)等差數(shù)列、等比數(shù)列的重要結(jié)論。例2命題1:若數(shù)列an的前n項(xiàng)和Sn=an+b(a1),則數(shù)列an是等比數(shù)列;命題2:若數(shù)列an的前n項(xiàng)和Sn=an2+bn+c(a0),則數(shù)列an是等差數(shù)列;命題3:若數(shù)列an的前n項(xiàng)和Sn=nan,則數(shù)列an既是等差數(shù)列,又是等比數(shù)列;上述三個(gè)命題中,真命題有( )A0個(gè) B1個(gè) C2個(gè) D3個(gè)解析: 由命題1得,a1=a+b,當(dāng)n2時(shí),an=SnSn1=(a1)·an1。若an是等比數(shù)列,則=a,即=a,所以只有當(dāng)b=1且a0時(shí),此數(shù)列才是等比數(shù)列。由命題2得,a1=a+b+c,當(dāng)n2

5、時(shí),an=SnSn1=2na+ba,若an是等差數(shù)列,則a2a1=2a,即2ac=2a,所以只有當(dāng)c=0時(shí),數(shù)列an才是等差數(shù)列。由命題3得,a1=a1,當(dāng)n2時(shí),an=SnSn1=a1,顯然an是一個(gè)常數(shù)列,即公差為0的等差數(shù)列,因此只有當(dāng)a10;即a1時(shí)數(shù)列an才又是等比數(shù)列。點(diǎn)評(píng):等比數(shù)列中通項(xiàng)與求和公式間有很大的聯(lián)系,上述三個(gè)命題均涉及到Sn與an的關(guān)系,它們是an=,正確判斷數(shù)列an是等差數(shù)列或等比數(shù)列,都必須用上述關(guān)系式,尤其注意首項(xiàng)與其他各項(xiàng)的關(guān)系。上述三個(gè)命題都不是真命題,選擇A。例3.(全國(guó)卷文)已知為等比數(shù)列,求的通項(xiàng)式。解: 設(shè)等比數(shù)列an的公比為q, 則q0, a2=

6、= , a4=a3q=2q,所以 + 2q= , 解得q1= , q2= 3, 當(dāng)q=時(shí), a1=18.所以 an=18×()n1= = 2×33n. 當(dāng)q=3時(shí), a1= , 所以an=×3n1=2×3n3.例4(全國(guó)文) 設(shè)等比數(shù)列 an的公比q<1,前n項(xiàng)和為Sn.已知a3=2,S4=5S2,求an的通項(xiàng)公式.解:由題設(shè)知,則 由得,因?yàn)椋獾没虍?dāng)時(shí),代入得,通項(xiàng)公式;當(dāng)時(shí),代入得,通項(xiàng)公式題型2:等比數(shù)列的判定例5已知等比數(shù)列中,則其前3項(xiàng)的和的取值范圍是(D )() ()() ()【解1】:等比數(shù)列中 當(dāng)公比為1時(shí), ; 當(dāng)公比為時(shí), 從

7、而淘汰()()()故選D;【解2】:等比數(shù)列中 當(dāng)公比時(shí),; 當(dāng)公比時(shí), 故選D;【考點(diǎn)】:此題重點(diǎn)考察等比數(shù)列前項(xiàng)和的意義,等比數(shù)列的通項(xiàng)公式,以及均值不等式的應(yīng)用;【突破】:特殊數(shù)列入手淘汰;重視等比數(shù)列的通項(xiàng)公式,前項(xiàng)和,以及均值不等式的應(yīng)用,特別是均值不等式使用的條件;點(diǎn)評(píng):本題主要考查等比數(shù)列的概念和基本性質(zhì),推理和運(yùn)算能力。例6(2009浙江文)設(shè)為數(shù)列的前項(xiàng)和,其中是常數(shù)(I) 求及;(II) (II)若對(duì)于任意的,成等比數(shù)列,求的值解()當(dāng),() 經(jīng)驗(yàn),()式成立, ()成等比數(shù)列,即,整理得:,對(duì)任意的成立, 例7、(2008陜西文)已知數(shù)列的首項(xiàng),()證明:數(shù)列是等比數(shù)列;

8、 ()數(shù)列的前項(xiàng)和) , , ,又, 數(shù)列是以為首項(xiàng),為公比的等比數(shù)列()由()知,即,設(shè), 則,由得 ,又?jǐn)?shù)列的前項(xiàng)和 題型3:等比數(shù)列的通項(xiàng)公式及應(yīng)用例8一個(gè)等比數(shù)列有三項(xiàng),如果把第二項(xiàng)加上4,那么所得的三項(xiàng)就成為等差數(shù)列,如果再把這個(gè)等差數(shù)列的第三項(xiàng)加上32,那么所得的三項(xiàng)又成為等比數(shù)列,求原來(lái)的等比數(shù)列解析:設(shè)所求的等比數(shù)列為a,aq,aq2;則2(aq+4)=a+aq2,且(aq+4)2=a(aq2+32);解得a=2,q=3或a=,q=5;故所求的等比數(shù)列為2,6,18或,。點(diǎn)評(píng):第一種解法利用等比數(shù)列的基本量,先求公比,后求其它量,這是解等差數(shù)列、等比數(shù)列的常用方法,其優(yōu)點(diǎn)是思路

9、簡(jiǎn)單、實(shí)用,缺點(diǎn)是有時(shí)計(jì)算較繁。例9(2009山東卷文)等比數(shù)列的前n項(xiàng)和為, 已知對(duì)任意的 ,點(diǎn),均在函數(shù)且均為常數(shù))的圖像上. (1)求r的值; (11)當(dāng)b=2時(shí),記 求數(shù)列的前項(xiàng)和解:因?yàn)閷?duì)任意的,點(diǎn),均在函數(shù)且均為常數(shù))的圖像上.所以得,當(dāng)時(shí), 當(dāng)時(shí),又因?yàn)闉榈缺葦?shù)列, 所以, 公比為, 所以(2)當(dāng)b=2時(shí),, 則 相減,得所以【命題立意】:本題主要考查了等比數(shù)列的定義,通項(xiàng)公式,以及已知求的基本題型,并運(yùn)用錯(cuò)位相減法求出一等比數(shù)列與一等差數(shù)列對(duì)應(yīng)項(xiàng)乘積所得新數(shù)列的前項(xiàng)和.例10(1)(2009安徽卷文)已知數(shù)列 的前n項(xiàng)和,數(shù)列的前n項(xiàng)和()求數(shù)列與的通項(xiàng)公式;()設(shè),證明:當(dāng)且僅當(dāng)n3時(shí), 【思路】由可求出,這是數(shù)列中求通項(xiàng)的常用方法之

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論