北師大版高中數(shù)學(xué)選修2-2第三章《導(dǎo)數(shù)應(yīng)用》全部教案姚連省編制_第1頁
北師大版高中數(shù)學(xué)選修2-2第三章《導(dǎo)數(shù)應(yīng)用》全部教案姚連省編制_第2頁
北師大版高中數(shù)學(xué)選修2-2第三章《導(dǎo)數(shù)應(yīng)用》全部教案姚連省編制_第3頁
北師大版高中數(shù)學(xué)選修2-2第三章《導(dǎo)數(shù)應(yīng)用》全部教案姚連省編制_第4頁
北師大版高中數(shù)學(xué)選修2-2第三章《導(dǎo)數(shù)應(yīng)用》全部教案姚連省編制_第5頁
已閱讀5頁,還剩30頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、北師大版高中數(shù)學(xué)選修2-2第三章 導(dǎo)數(shù)應(yīng)用全部教案扶風(fēng)縣法門高中 姚連省§1 函數(shù)的單調(diào)性與極值第一課時(shí) 導(dǎo)數(shù)與函數(shù)的單調(diào)性(一)一、教學(xué)目標(biāo):1、知識與技能:理解函數(shù)單調(diào)性的概念;會(huì)判斷函數(shù)的單調(diào)性,會(huì)求函數(shù)的單調(diào)區(qū)間。2、過程與方法:通過具體實(shí)例的分析,經(jīng)歷對函數(shù)平均變化率和瞬時(shí)變化率的探索過程;通過分析具體實(shí)例,經(jīng)歷由平均變化率及渡到瞬時(shí)變化率的過程。3、情感、態(tài)度與價(jià)值觀:讓學(xué)生感悟由具體到抽象,由特殊到一般的思想方法。二、教學(xué)重點(diǎn):函數(shù)單調(diào)性的判定 教學(xué)難點(diǎn):函數(shù)單調(diào)區(qū)間的求法三、教學(xué)方法:探究歸納,講練結(jié)合四、教學(xué)過程(一)創(chuàng)設(shè)情景函數(shù)是客觀描述世界變化規(guī)律的重要數(shù)學(xué)模型

2、,研究函數(shù)時(shí),了解函數(shù)的贈(zèng)與減、增減的快與慢以及函數(shù)的最大值或最小值等性質(zhì)是非常重要的通過研究函數(shù)的這些性質(zhì),我們可以對數(shù)量的變化規(guī)律有一個(gè)基本的了解下面,我們運(yùn)用導(dǎo)數(shù)研究函數(shù)的性質(zhì),從中體會(huì)導(dǎo)數(shù)在研究函數(shù)中的作用(二)新課探究 1問題:圖3.3-1(1),它表示跳水運(yùn)動(dòng)中高度隨時(shí)間變化的函數(shù)的圖像,圖3.3-1(2)表示高臺跳水運(yùn)動(dòng)員的速度隨時(shí)間變化的函數(shù)的圖像運(yùn)動(dòng)員從起跳到最高點(diǎn),以及從最高點(diǎn)到入水這兩段時(shí)間的運(yùn)動(dòng)狀態(tài)有什么區(qū)別?通過觀察圖像,我們可以發(fā)現(xiàn):(1)運(yùn)動(dòng)員從起點(diǎn)到最高點(diǎn),離水面的高度隨時(shí)間的增加而增加,即是增函數(shù)相應(yīng)地,(2)從最高點(diǎn)到入水,運(yùn)動(dòng)員離水面的高度隨時(shí)間的增加而減

3、少,即是減函數(shù)相應(yīng)地,2函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系觀察下面函數(shù)的圖像,探討函數(shù)的單調(diào)性與其導(dǎo)數(shù)正負(fù)的關(guān)系如圖3.3-3,導(dǎo)數(shù)表示函數(shù)在點(diǎn)處的切線的斜率在處,切線是“左下右上”式的,這時(shí),函數(shù)在附近單調(diào)遞增;在處,切線是“左上右下”式的,這時(shí),函數(shù)在附近單調(diào)遞減結(jié)論:函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系在某個(gè)區(qū)間內(nèi),如果,那么函數(shù)在這個(gè)區(qū)間內(nèi)單調(diào)遞增;如果,那么函數(shù)在這個(gè)區(qū)間內(nèi)單調(diào)遞減說明:(1)特別的,如果,那么函數(shù)在這個(gè)區(qū)間內(nèi)是常函數(shù)3求解函數(shù)單調(diào)區(qū)間的步驟:(1)確定函數(shù)的定義域;(2)求導(dǎo)數(shù);(3)解不等式,解集在定義域內(nèi)的部分為增區(qū)間;(4)解不等式,解集在定義域內(nèi)的部分為減區(qū)間(三)典例探析例1、

4、已知導(dǎo)函數(shù)的下列信息:當(dāng)時(shí),;當(dāng),或時(shí),;當(dāng),或時(shí),試畫出函數(shù)圖像的大致形狀解:當(dāng)時(shí),可知在此區(qū)間內(nèi)單調(diào)遞增;當(dāng),或時(shí),;可知在此區(qū)間內(nèi)單調(diào)遞減;當(dāng),或時(shí),這兩點(diǎn)比較特殊,我們把它稱為“臨界點(diǎn)”綜上,函數(shù)圖像的大致形狀如圖3.3-4所示例2、判斷下列函數(shù)的單調(diào)性,并求出單調(diào)區(qū)間(1); (2)(3); (4)解:(1)因?yàn)椋裕虼?,在R上單調(diào)遞增,如圖3.3-5(1)所示(2)因?yàn)椋裕?當(dāng),即時(shí),函數(shù)單調(diào)遞增;當(dāng),即時(shí),函數(shù)單調(diào)遞減;函數(shù)的圖像如圖3.3-5(2)所示(3)因?yàn)椋?,因此,函?shù)在單調(diào)遞減,如圖3.3-5(3)所示(4)因?yàn)椋?當(dāng),即 時(shí),函數(shù) ;當(dāng),即 時(shí),函數(shù)

5、;函數(shù)的圖像如圖3.3-5(4)所示注:(3)、(4)生練例3如圖3.3-6,水以常速(即單位時(shí)間內(nèi)注入水的體積相同)注入下面四種底面積相同的容器中,請分別找出與各容器對應(yīng)的水的高度與時(shí)間的函數(shù)關(guān)系圖像分析:以容器(2)為例,由于容器上細(xì)下粗,所以水以常速注入時(shí),開始階段高度增加得慢,以后高度增加得越來越快反映在圖像上,(A)符合上述變化情況同理可知其它三種容器的情況 解:思考:例3表明,通過函數(shù)圖像,不僅可以看出函數(shù)的增減,還可以看出其變化的快慢結(jié)合圖像,你能從導(dǎo)數(shù)的角度解釋變化快慢的情況嗎? 一般的,如果一個(gè)函數(shù)在某一范圍內(nèi)導(dǎo)數(shù)的絕對值較大,那么函數(shù)在這個(gè)范圍內(nèi)變化的快,這時(shí),函數(shù)的圖像就

6、比較“陡峭”;反之,函數(shù)的圖像就“平緩”一些如圖3.3-7所示,函數(shù)在或內(nèi)的圖像“陡峭”,在或內(nèi)的圖像“平緩”例4、求證:函數(shù)在區(qū)間內(nèi)是減函數(shù)證明:因?yàn)楫?dāng)即時(shí),所以函數(shù)在區(qū)間內(nèi)是減函數(shù)說明:證明可導(dǎo)函數(shù)在內(nèi)的單調(diào)性步驟:(1)求導(dǎo)函數(shù);(2)判斷在內(nèi)的符號;(3)做出結(jié)論:為增函數(shù),為減函數(shù)(四)課堂練習(xí):課本P59頁練習(xí)1(1);2(五)回顧總結(jié):(1)函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系;(2)求解函數(shù)單調(diào)區(qū)間;(3)證明可導(dǎo)函數(shù)在內(nèi)的單調(diào)性(六)布置作業(yè):課本P62頁習(xí)題3-1A組1、2五、教后反思:第二課時(shí) 導(dǎo)數(shù)與函數(shù)的單調(diào)性(二)一、教學(xué)目標(biāo):1、知識與技能:理解函數(shù)單調(diào)性的概念;會(huì)判斷函數(shù)的單

7、調(diào)性,會(huì)求函數(shù)的單調(diào)區(qū)間。2、過程與方法:通過具體實(shí)例的分析,經(jīng)歷對函數(shù)平均變化率和瞬時(shí)變化率的探索過程;通過分析具體實(shí)例,經(jīng)歷由平均變化率及渡到瞬時(shí)變化率的過程。3、情感、態(tài)度與價(jià)值觀:讓學(xué)生感悟由具體到抽象,由特殊到一般的思想方法。二、教學(xué)重點(diǎn):函數(shù)單調(diào)性的判定 教學(xué)難點(diǎn):函數(shù)單調(diào)區(qū)間的求法三、教學(xué)方法:探究歸納,講練結(jié)合四、教學(xué)過程(一)、問題情境1情境:作為函數(shù)變化率的導(dǎo)數(shù)刻畫了函數(shù)變化的趨勢(上升或下降的陡峭程度),而函數(shù)的單調(diào)性也是對函數(shù)變化的一種刻畫2問題:那么導(dǎo)數(shù)與函數(shù)的單調(diào)性有什么聯(lián)系呢?(二)、學(xué)生活動(dòng):結(jié)合一個(gè)單調(diào)函數(shù)的圖象,思考在函數(shù)單調(diào)遞增的部分其切線的斜率的符號(三

8、)、建構(gòu)數(shù)學(xué)如果函數(shù)在區(qū)間上是增函數(shù),那么對任意,當(dāng)時(shí),即與同號,從而,即這表明,導(dǎo)數(shù)大于與函數(shù)單調(diào)遞增密切相關(guān)一般地,我們有下面的結(jié)論:設(shè)函數(shù),如果在某區(qū)間上,那么為該區(qū)間上的增函數(shù);如果在某區(qū)間上,那么為該區(qū)間上的減函數(shù);如果在某區(qū)間上,那么為該區(qū)間上的常數(shù)函數(shù)上述結(jié)論可以用下圖來直觀理解思考:試結(jié)合:如果在某區(qū)間上單調(diào)遞增,那么在該區(qū)間上必有 嗎?說明:若為某區(qū)間上的增(減)函數(shù),則在該區(qū)間上()不一定成立即如果在某區(qū)間上()是在該區(qū)間上是增(減)函數(shù)的充分不必要條件(四)、知識運(yùn)用1、例題探析:例1、確定函數(shù)在哪個(gè)區(qū)間內(nèi)是增函數(shù),哪個(gè)區(qū)間內(nèi)是減函數(shù)解:令,解得因此,在區(qū)間內(nèi),是增函數(shù)同

9、理可得,在區(qū)間內(nèi),是減函數(shù)(如左圖)例2、確定函數(shù)在哪些區(qū)間內(nèi)是增函數(shù)解:令,解得或因此,在區(qū)間內(nèi),是增函數(shù);在區(qū)間內(nèi),也是增函數(shù)例3、確定函數(shù),的單調(diào)減區(qū)間解:令,即,又,所以故區(qū)間是函數(shù),的單調(diào)減區(qū)間注意:所求的單調(diào)區(qū)間必須在函數(shù)的定義域內(nèi)例4、已知曲線,(1)用導(dǎo)數(shù)證明此函數(shù)在上單調(diào)遞增;(2)求曲線的切線的斜率的取值范圍(1)證明:恒成立所以此函數(shù)在上遞增(2)解:由()可知,所以的斜率的范圍是2、鞏固練習(xí):練習(xí)冊1,2,3(五)回顧小結(jié):函數(shù)單調(diào)性與導(dǎo)數(shù)的關(guān)系:函數(shù),如果在某區(qū)間上,那么為該區(qū)間上的增函數(shù);如果在某區(qū)間上,那么為該區(qū)間上的減函數(shù);如果在某區(qū)間上,那么為該區(qū)間上的常數(shù)函

10、數(shù)。用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的步驟:求函數(shù)f(x)的導(dǎo)數(shù)f(x)。令f(x) 0解不等式,得x的范圍就是遞增區(qū)間。令f(x)0解不等式,得x的范圍,就是遞減區(qū)間。(六)、作業(yè)布置:1、已知函數(shù)的圖象過點(diǎn)P(0,2),且在點(diǎn)M處的切線方程為.()求函數(shù)的解析式;()求函數(shù)的單調(diào)區(qū)間。解:()由的圖象經(jīng)過P(0,2),知d=2,所以由在處的切線方程是,知故所求的解析式是 ()解得 當(dāng)當(dāng)故內(nèi)是增函數(shù),在內(nèi)是減函數(shù),在內(nèi)是增函數(shù).2、已知向量在區(qū)間(1,1)上是增函數(shù),求t的取值范圍。解: 依定義的圖象是開口向下的拋物線,五、教后反思:第四課時(shí) 函數(shù)的極值一、教學(xué)目標(biāo):1、知識與技能:理解函數(shù)極值的概念;

11、會(huì)求給定函數(shù)在某區(qū)間上的極值。2、過程與方法:通過具體實(shí)例的分析,會(huì)對函數(shù)的極大值與極小值。3、情感、態(tài)度與價(jià)值觀:讓學(xué)生感悟由具體到抽象,由特殊到一般的思想方法。二、教學(xué)重點(diǎn):函數(shù)極值的判定方法 教學(xué)難點(diǎn):函數(shù)極值的判定方法三、教學(xué)方法:探究歸納,講練結(jié)合四、教學(xué)過程(一)、復(fù)習(xí)引入1、常見函數(shù)的導(dǎo)數(shù)公式:; ; 2、法則1 法則2 , 法則3 3、復(fù)合函數(shù)的導(dǎo)數(shù): 4、函數(shù)的導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系:設(shè)函數(shù)y=f(x) 在某個(gè)區(qū)間內(nèi)有導(dǎo)數(shù),如果在這個(gè)區(qū)間內(nèi)>0,那么函數(shù)y=f(x) 在為這個(gè)區(qū)間內(nèi)的增函數(shù);如果在這個(gè)區(qū)間內(nèi)<0,那么函數(shù)y=f(x) 在為這個(gè)區(qū)間內(nèi)的減函數(shù)5、用

12、導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的步驟:求函數(shù)f(x)的導(dǎo)數(shù)f(x). 令f(x)0解不等式,得x的范圍就是遞增區(qū)間.令f(x)0解不等式,得x的范圍,就是遞減區(qū)間 (二)、探究新課1、極大值: 一般地,設(shè)函數(shù)f(x)在點(diǎn)x0附近有定義,如果對x0附近的所有的點(diǎn)都有f(x)f(x0),就說f(x0)是函數(shù)f(x)的一個(gè)極大值,記作y極大值=f(x0),x0是極大值點(diǎn)2、極小值:一般地,設(shè)函數(shù)f(x)在x0附近有定義,如果對x0附近的所有的點(diǎn),都有f(x)f(x0).就說f(x0)是函數(shù)f(x)的一個(gè)極小值,記作y極小值=f(x0),x0是極小值點(diǎn)3、極大值與極小值統(tǒng)稱為極值在定義中,取得極值的點(diǎn)稱為極值點(diǎn),

13、極值點(diǎn)是自變量的值,極值指的是函數(shù)值請注意以下幾點(diǎn):()極值是一個(gè)局部概念由定義,極值只是某個(gè)點(diǎn)的函數(shù)值與它附近點(diǎn)的函數(shù)值比較是最大或最小并不意味著它在函數(shù)的整個(gè)的定義域內(nèi)最大或最?。ǎ┖瘮?shù)的極值不是唯一的即一個(gè)函數(shù)在某區(qū)間上或定義域內(nèi)極大值或極小值可以不止一個(gè)()極大值與極小值之間無確定的大小關(guān)系即一個(gè)函數(shù)的極大值未必大于極小值,如下圖所示,是極大值點(diǎn),是極小值點(diǎn),而>()函數(shù)的極值點(diǎn)一定出現(xiàn)在區(qū)間的內(nèi)部,區(qū)間的端點(diǎn)不能成為極值點(diǎn)而使函數(shù)取得最大值、最小值的點(diǎn)可能在區(qū)間的內(nèi)部,也可能在區(qū)間的端點(diǎn)4、判別f(x0)是極大、極小值的方法:若滿足,且在的兩側(cè)的導(dǎo)數(shù)異號,則是的極值點(diǎn),是極值,

14、并且如果在兩側(cè)滿足“左正右負(fù)”,則是的極大值點(diǎn),是極大值;如果在兩側(cè)滿足“左負(fù)右正”,則是的極小值點(diǎn),是極小值5、求可導(dǎo)函數(shù)f(x)的極值的步驟:(1)確定函數(shù)的定義區(qū)間,求導(dǎo)數(shù);(2)求方程=0的根;(3)用函數(shù)的導(dǎo)數(shù)為0的點(diǎn),順次將函數(shù)的定義區(qū)間分成若干小開區(qū)間,并列成表格.檢查在方程根左右的值的符號,如果左正右負(fù),那么f(x)在這個(gè)根處取得極大值;如果左負(fù)右正,那么f(x)在這個(gè)根處取得極小值;如果左右不改變符號,那么f(x)在這個(gè)根處無極值。(三)、典例探析例1、求的極值 解: 因?yàn)?,所以。下面分兩種情況討論:(1)當(dāng)>0,即,或時(shí);(2)當(dāng)<0,即時(shí).當(dāng)x變化時(shí), ,的變

15、化情況如下表:-2(-2,2)2+00+極大值極小值因此,當(dāng)時(shí),有極大值,并且極大值為;當(dāng)時(shí),有極小值,并且極小值為。函數(shù)的圖像如圖所示。例2、求y=(x21)3+1的極值解:y=6x(x21)2=6x(x+1)2(x1)2令y=0解得x1=1,x2=0,x3=1當(dāng)x變化時(shí),y,y的變化情況如下表-1(-1,0)0(0,1)100+0+無極值極小值0無極值當(dāng)x=0時(shí),y有極小值且y極小值=0(四)、鞏固練習(xí):1求下列函數(shù)的極值.(1)y=x27x+6 (2)y=x327x(1)解:y=(x27x+6)=2x7令y=0,解得x=.當(dāng)x變化時(shí),y,y的變化情況如下表.0+極小值當(dāng)x=時(shí),y有極小值

16、,且y極小值=.(2)解:y=(x327x)=3x227=3(x+3)(x3),令y=0,解得x1=3,x2=3.當(dāng)x變化時(shí),y,y的變化情況如下表.-3(-3,3)3+00+極大值54極小值-54當(dāng)x=3時(shí),y有極大值,且y極大值=54.當(dāng)x=3時(shí),y有極小值,且y極小值=54(五)、小結(jié):函數(shù)的極大、極小值的定義以及判別方法.求可導(dǎo)函數(shù)f(x)的極值的三個(gè)步驟.還有要弄清函數(shù)的極值是就函數(shù)在某一點(diǎn)附近的小區(qū)間而言的,在整個(gè)定義區(qū)間可能有多個(gè)極值,且要在這點(diǎn)處連續(xù).可導(dǎo)函數(shù)極值點(diǎn)的導(dǎo)數(shù)為0,但導(dǎo)數(shù)為零的點(diǎn)不一定是極值點(diǎn),要看這點(diǎn)兩側(cè)的導(dǎo)數(shù)是否異號.函數(shù)的不可導(dǎo)點(diǎn)可能是極值點(diǎn) 求極值的具體步驟

17、:第一,求導(dǎo)數(shù)f(x).第二,令f(x)=0求方程的根,第三,列表,檢查f(x)在方程根左右的值的符號,如果左正右負(fù),那么f(x)在這個(gè)根處取得極大值;如果左負(fù)右正,那么f(x)在這個(gè)根處取得極小值,如果左右都是正,或者左右都是負(fù),那么f(x)在這根處無極值.如果函數(shù)在某些點(diǎn)處連續(xù)但不可導(dǎo),也需要考慮這些點(diǎn)是否是極值點(diǎn) (六)、課后作業(yè):課本P62 練習(xí)題(1)、(2) 課本習(xí)題3-1中 A組3五、教后反思:§2 導(dǎo)數(shù)在實(shí)際問題中的應(yīng)用第五課時(shí) 函數(shù)的最大值與最小值(一)一、教學(xué)目標(biāo):1、知識與技能:會(huì)求函數(shù)的最大值與最小值。2、過程與方法:通過具體實(shí)例的分析,會(huì)利用導(dǎo)數(shù)求函數(shù)的最值

18、。3、情感、態(tài)度與價(jià)值觀:讓學(xué)生感悟由具體到抽象,由特殊到一般的思想方法。二、教學(xué)重點(diǎn):函數(shù)最大值與最小值的求法 教學(xué)難點(diǎn):函數(shù)最大值與最小值的求法三、教學(xué)方法:探究歸納,講練結(jié)合四、教學(xué)過程:(一)、復(fù)習(xí)引入 1、極大值: 一般地,設(shè)函數(shù)f(x)在點(diǎn)x0附近有定義,如果對x0附近的所有的點(diǎn),都有f(x)f(x0),就說f(x0)是函數(shù)f(x)的一個(gè)極大值,記作y極大值=f(x0),x0是極大值點(diǎn)2、極小值:一般地,設(shè)函數(shù)f(x)在x0附近有定義,如果對x0附近的所有的點(diǎn),都有f(x)f(x0).就說f(x0)是函數(shù)f(x)的一個(gè)極小值,記作y極小值=f(x0),x0是極小值點(diǎn)3、極大值與極小

19、值統(tǒng)稱為極值注意以下幾點(diǎn):()極值是一個(gè)局部概念由定義,極值只是某個(gè)點(diǎn)的函數(shù)值與它附近點(diǎn)的函數(shù)值比較是最大或最小并不意味著它在函數(shù)的整個(gè)的定義域內(nèi)最大或最小()函數(shù)的極值不是唯一的即一個(gè)函數(shù)在某區(qū)間上或定義域內(nèi)極大值或極小值可以不止一個(gè)()極大值與極小值之間無確定的大小關(guān)系即一個(gè)函數(shù)的極大值未必大于極小值,如下圖所示,是極大值點(diǎn),是極小值點(diǎn),而> ()函數(shù)的極值點(diǎn)一定出現(xiàn)在區(qū)間的內(nèi)部,區(qū)間的端點(diǎn)不能成為極值點(diǎn)而使函數(shù)取得最大值、最小值的點(diǎn)可能在區(qū)間的內(nèi)部,也可能在區(qū)間的端點(diǎn)我們知道,極值反映的是函數(shù)在某一點(diǎn)附近的局部性質(zhì),而不是函數(shù)在整個(gè)定義域內(nèi)的性質(zhì)也就是說,如果是函數(shù)的極大(?。┲迭c(diǎn)

20、,那么在點(diǎn)附近找不到比更大(?。┑闹档?,在解決實(shí)際問題或研究函數(shù)的性質(zhì)時(shí),我們更關(guān)心函數(shù)在某個(gè)區(qū)間上,哪個(gè)至最大,哪個(gè)值最小如果是函數(shù)的最大(小)值,那么不?。ù螅┯诤瘮?shù)在相應(yīng)區(qū)間上的所有函數(shù)值(二)、探究新課1、函數(shù)的最大值和最小值觀察圖中一個(gè)定義在閉區(qū)間上的函數(shù)的圖象圖中與是極小值,是極大值函數(shù)在上的最大值是,最小值是結(jié)論:一般地,在閉區(qū)間上函數(shù)的圖像是一條連續(xù)不斷的曲線,那么函數(shù)在上必有最大值與最小值說明:在開區(qū)間內(nèi)連續(xù)的函數(shù)不一定有最大值與最小值如函數(shù)在內(nèi)連續(xù),但沒有最大值與最小值;函數(shù)的最值是比較整個(gè)定義域內(nèi)的函數(shù)值得出的;函數(shù)的極值是比較極值點(diǎn)附近函數(shù)值得出的函數(shù)在閉區(qū)間上連續(xù),

21、是在閉區(qū)間上有最大值與最小值的充分條件而非必要條件(4)函數(shù)在其定義區(qū)間上的最大值、最小值最多各有一個(gè),而函數(shù)的極值可能不止一個(gè),也可能沒有一個(gè)2、“最值”與“極值”的區(qū)別和聯(lián)系最值”是整體概念,是比較整個(gè)定義域內(nèi)的函數(shù)值得出的,具有絕對性;而“極值”是個(gè)局部概念,是比較極值點(diǎn)附近函數(shù)值得出的,具有相對性從個(gè)數(shù)上看,一個(gè)函數(shù)在其定義域上的最值是唯一的;而極值不唯一;函數(shù)在其定義區(qū)間上的最大值、最小值最多各有一個(gè),而函數(shù)的極值可能不止一個(gè),也可能沒有一個(gè)極值只能在定義域內(nèi)部取得,而最值可以在區(qū)間的端點(diǎn)處取得,有極值的未必有最值,有最值的未必有極值;極值有可能成為最值,最值只要不在端點(diǎn)必定是極值3

22、、利用導(dǎo)數(shù)求函數(shù)的最值步驟:由上面函數(shù)的圖象可以看出,只要把連續(xù)函數(shù)所有的極值與定義區(qū)間端點(diǎn)的函數(shù)值進(jìn)行比較,就可以得出函數(shù)的最值了設(shè)函數(shù)在上連續(xù),在內(nèi)可導(dǎo),則求在上的最大值與最小值的步驟如下:求在內(nèi)的極值;將的各極值與、比較得出函數(shù)在上的最值(三)、例題探析例1、求函數(shù)在區(qū)間上的最大值與最小值解:先求導(dǎo)數(shù),得令0即解得導(dǎo)數(shù)的正負(fù)以及,如下表X-2(-2,-1)-1(-1,0)0(0,1)1(1,2)2y/000y1345413從上表知,當(dāng)時(shí),函數(shù)有最大值13,當(dāng)時(shí),函數(shù)有最小值4 例2、已知,(0,+).是否存在實(shí)數(shù),使同時(shí)滿足下列兩個(gè)條件:(1))在(0,1)上是減函數(shù),在1,+)上是增函

23、數(shù);(2)的最小值是1,若存在,求出,若不存在,說明理由.解:設(shè)g(x)= f(x)在(0,1)上是減函數(shù),在1,+)上是增函數(shù)g(x)在(0,1)上是減函數(shù),在1,+)上是增函數(shù). 解得 經(jīng)檢驗(yàn),a=1,b=1時(shí),f(x)滿足題設(shè)的兩個(gè)條件。(四)、課堂練習(xí):1下列說法正確的是( )A.函數(shù)的極大值就是函數(shù)的最大值 B.函數(shù)的極小值就是函數(shù)的最小值C.函數(shù)的最值一定是極值 D.在閉區(qū)間上的連續(xù)函數(shù)一定存在最值2.函數(shù)y=f(x)在區(qū)間a,b上的最大值是M,最小值是m,若M=m,則f(x) ( )A.等于0B.大于0 C.小于0D.以上都有可能3.函數(shù)y=,在1,1上的最小值為( )A.0B.

24、2 C.1D.4.函數(shù)y=的最大值為( )。A.B.1 C.D.5.設(shè)y=|x|3,那么y在區(qū)間3,1上的最小值是( )A.27B.3 C.1D.16.設(shè)f(x)=ax36ax2+b在區(qū)間1,2上的最大值為3,最小值為29,且a>b,則( )A.a=2,b=29B.a=2,b=3 C.a=3,b=2 D.a=2,b=3(五)、小結(jié) :函數(shù)在閉區(qū)間上的最值點(diǎn)必在下列各種點(diǎn)之中:導(dǎo)數(shù)等于零的點(diǎn),導(dǎo)數(shù)不存在的點(diǎn),區(qū)間端點(diǎn);函數(shù)在閉區(qū)間上連續(xù),是在閉區(qū)間上有最大值與最小值的充分條件而非必要條件;閉區(qū)間上的連續(xù)函數(shù)一定有最值;開區(qū)間內(nèi)的可導(dǎo)函數(shù)不一定有最值,若有唯一的極值,則此極值必是函數(shù)的最值。

25、(六)、作業(yè)布置:課本P69頁習(xí)題3-2A組2、4五、教學(xué)反思:第六課時(shí) 函數(shù)的最大值與最小值(二)一、教學(xué)目標(biāo):理解并掌握函數(shù)最大值與最小值的意義及其求法.弄請函數(shù)極值與最值的區(qū)別與聯(lián)系.養(yǎng)成“整體思維”的習(xí)慣,提高應(yīng)用知識解決實(shí)際問題的能力.二、教學(xué)重點(diǎn):求函數(shù)的最值及求實(shí)際問題的最值.教學(xué)難點(diǎn):求實(shí)際問題的最值.掌握求最值的方法關(guān)鍵是嚴(yán)格套用求最值的步驟,突破難點(diǎn)要把實(shí)際問題“數(shù)學(xué)化”,即建立數(shù)學(xué)模型.三、教學(xué)方法:探究歸納,講練結(jié)合四、教學(xué)過程(一)復(fù)習(xí)引入1函數(shù)y = x·ex在x0, 4的最小值為( A )A0BCD2給出下面四個(gè)命題.函數(shù)y = x2 5x + 4 (x

26、1,3)的最大值為10,最小值為;函數(shù)y = 2x2 4x + 1 (x(2, 4)的最大值為17,最小值為1;函數(shù)y = x3 12x (x(3, 3)的最大值為16,最小值為 16;函數(shù)y = x3 12x (x(2, 2)無最大值,也無最小值.其中正確的命題有( C )A1個(gè)B2個(gè)C3個(gè)D4個(gè)(二)、利用導(dǎo)數(shù)求函數(shù)的最值步驟:由上面函數(shù)的圖象可以看出,只要把連續(xù)函數(shù)所有的極值與定義區(qū)間端點(diǎn)的函數(shù)值進(jìn)行比較,就可以得出函數(shù)的最值了設(shè)函數(shù)在上連續(xù),在內(nèi)可導(dǎo),則求在上的最大值與最小值的步驟如下:求在內(nèi)的極值;將的各極值與、比較得出函數(shù)在上的最值說明:在開區(qū)間內(nèi)連續(xù)的函數(shù)不一定有最大值與最小值如

27、函數(shù)在內(nèi)連續(xù),但沒有最大值與最小值;函數(shù)的最值是比較整個(gè)定義域內(nèi)的函數(shù)值得出的;函數(shù)的極值是比較極值點(diǎn)附近函數(shù)值得出的函數(shù)在閉區(qū)間上連續(xù),是在閉區(qū)間上有最大值與最小值的充分條件而非必要條件(4)函數(shù)在其定義區(qū)間上的最大值、最小值最多各有一個(gè),而函數(shù)的極值可能不止一個(gè),也可能沒有一個(gè)(三)典例探析例1、求函數(shù)的最大值與最小值。解析:列表:-0+0-極小值極大值,練習(xí):求函數(shù)的最大值與最小值。例2、已知函數(shù),(I)求函數(shù)在上的最大值和最小值.(II)過點(diǎn)作曲線的切線,求此切線的方程.解析:(I), 當(dāng)或時(shí),為函數(shù)的單調(diào)增區(qū)間 當(dāng)時(shí),為函數(shù)的單調(diào)減區(qū)間 又因?yàn)椋援?dāng)時(shí), 當(dāng)時(shí), (II)設(shè)切點(diǎn)為,

28、則所求切線方程為 由于切線過點(diǎn),解得或 所以切線方程為即或 練習(xí):已知函數(shù)。若f(x)在-1,2上的最大值為3,最小值為29,求:a、b的值例3、已知a為實(shí)數(shù),()求導(dǎo)數(shù);()若,求在上的最大值和最小值;()若在和2,+上都是遞增的,求a的取值范圍。解:()由原式得 ()由 得,此時(shí)有.由得或x=-1 , 又所以f(x)在-2,2上的最大值為最小值為 ()的圖象為開口向上且過點(diǎn)(0,-4)的拋物線,由條件得 即 -2a2. 所以a的取值范圍為-2,2. (四)、課堂小結(jié):1、函數(shù)在閉區(qū)間上的最值點(diǎn)必在下列各種點(diǎn)之中:導(dǎo)數(shù)等于零的點(diǎn),導(dǎo)數(shù)不存在的點(diǎn),區(qū)間端點(diǎn);2、函數(shù)在閉區(qū)間上連續(xù),是在閉區(qū)間上

29、有最大值與最小值的充分條件而非必要條件;3、閉區(qū)間上的連續(xù)函數(shù)一定有最值;開區(qū)間內(nèi)的可導(dǎo)函數(shù)不一定有最值,若有唯一的極值,則此極值必是函數(shù)的最值 4、利用導(dǎo)數(shù)求函數(shù)的最值方法(五)課后作業(yè):練習(xí)冊P41中2、4、5、7五、教學(xué)反思:第七課時(shí) 導(dǎo)數(shù)的實(shí)際應(yīng)用(一)一、教學(xué)目標(biāo):1、知識與技能:讓學(xué)生掌握在實(shí)際生活中問題的求解方法;會(huì)利用導(dǎo)數(shù)求解最值。2、過程與方法:通過分析具體實(shí)例,經(jīng)歷由實(shí)際問題抽象為數(shù)學(xué)問題的過程。3、情感、態(tài)度與價(jià)值觀:讓學(xué)生感悟由具體到抽象,由特殊到一般的思想方法二、教學(xué)重點(diǎn):函數(shù)建模過程 教學(xué)難點(diǎn):函數(shù)建模過程三、教學(xué)方法:探究歸納,講練結(jié)合四、教學(xué)過程(一)、復(fù)習(xí):利

30、用導(dǎo)數(shù)求函數(shù)極值和最值的方法(二)、探究新課例1、在邊長為60 cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個(gè)無蓋的方底箱子,箱底的邊長是多少時(shí),箱底的容積最大?最大容積是多少?解法一:設(shè)箱底邊長為xcm,則箱高cm,得箱子容積 令 0,解得 x=0(舍去),x=40, 并求得V(40)=16 000由題意可知,當(dāng)x過?。ń咏?)或過大(接近60)時(shí),箱子容積很小,因此,16 000是最大值答:當(dāng)x=40cm時(shí),箱子容積最大,最大容積是16 000cm3解法二:設(shè)箱高為xcm,則箱底長為(60-2x)cm,則得箱子容積(后面同解法一,略)由題意可知,當(dāng)x過小或過

31、大時(shí)箱子容積很小,所以最大值出現(xiàn)在極值點(diǎn)處事實(shí)上,可導(dǎo)函數(shù)、在各自的定義域中都只有一個(gè)極值點(diǎn),從圖象角度理解即只有一個(gè)波峰,是單峰的,因而這個(gè)極值點(diǎn)就是最值點(diǎn),不必考慮端點(diǎn)的函數(shù)值例2、圓柱形金屬飲料罐的容積一定時(shí),它的高與底與半徑應(yīng)怎樣選取,才能使所用的材料最省?解:設(shè)圓柱的高為h,底半徑為R,則表面積S=2Rh+2R2由V=R2h,得,則S(R)= 2R+ 2R2=+2R2令+4R=0解得,R=,從而h=2即h=2R因?yàn)镾(R)只有一個(gè)極值,所以它是最小值答:當(dāng)罐的高與底直徑相等時(shí),所用材料最省變式:當(dāng)圓柱形金屬飲料罐的表面積為定值S時(shí),它的高與底面半徑應(yīng)怎樣選取,才能使所用材料最?。?提

32、示:S=2+h=V(R)=R= )=0 例3、已知某商品生產(chǎn)成本C與產(chǎn)量q的函數(shù)關(guān)系式為C=100+4q,價(jià)格p與產(chǎn)量q的函數(shù)關(guān)系式為求產(chǎn)量q為何值時(shí),利潤L最大?分析:利潤L等于收入R減去成本C,而收入R等于產(chǎn)量乘價(jià)格由此可得出利潤L與產(chǎn)量q的函數(shù)關(guān)系式,再用導(dǎo)數(shù)求最大利潤解:收入,利潤令,即,求得唯一的極值點(diǎn)答:產(chǎn)量為84時(shí),利潤L最大(三)、小結(jié):本節(jié)課學(xué)習(xí)了導(dǎo)數(shù)在解決實(shí)際問題中的應(yīng)用.(四)、課堂練習(xí):第69頁練習(xí)題 (五)、課后作業(yè):第69頁A組中1、3 B組題。五、教后反思:第八課時(shí) 導(dǎo)數(shù)的實(shí)際應(yīng)用(二)一、教學(xué)目標(biāo):1、使利潤最大、用料最省、效率最高等優(yōu)化問題,體會(huì)導(dǎo)數(shù)在解決實(shí)際

33、問題中的作用;2、提高將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力。二、教學(xué)重點(diǎn):利用導(dǎo)數(shù)解決生活中的一些優(yōu)化問題教學(xué)難點(diǎn):利用導(dǎo)數(shù)解決生活中的一些優(yōu)化問題三、教學(xué)方法:探究歸納,講練結(jié)合四、教學(xué)過程:(一)創(chuàng)設(shè)情景生活中經(jīng)常遇到求利潤最大、用料最省、效率最高等問題,這些問題通常稱為優(yōu)化問題通過前面的學(xué)習(xí),我們知道,導(dǎo)數(shù)是求函數(shù)最大(?。┲档挠辛ぞ哌@一節(jié),我們利用導(dǎo)數(shù),解決一些生活中的優(yōu)化問題(二)新課探究導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用主要是解決有關(guān)函數(shù)最大值、最小值的實(shí)際問題,主要有以下幾個(gè)方面:1、與幾何有關(guān)的最值問題;2、與物理學(xué)有關(guān)的最值問題;3、與利潤及其成本有關(guān)的最值問題;4、效率最值問題。解決優(yōu)化問

34、題的方法:首先是需要分析問題中各個(gè)變量之間的關(guān)系,建立適當(dāng)?shù)暮瘮?shù)關(guān)系,并確定函數(shù)的定義域,通過創(chuàng)造在閉區(qū)間內(nèi)求函數(shù)取值的情境,即核心問題是建立適當(dāng)?shù)暮瘮?shù)關(guān)系。再通過研究相應(yīng)函數(shù)的性質(zhì),提出優(yōu)化方案,使問題得以解決,在這個(gè)過程中,導(dǎo)數(shù)是一個(gè)有力的工具利用導(dǎo)數(shù)解決優(yōu)化問題的基本思路:建立數(shù)學(xué)模型解決數(shù)學(xué)模型作答用函數(shù)表示的數(shù)學(xué)問題優(yōu)化問題用導(dǎo)數(shù)解決數(shù)學(xué)問題優(yōu)化問題的答案(三)典例分析例1、海報(bào)版面尺寸的設(shè)計(jì) 學(xué)校或班級舉行活動(dòng),通常需要張貼海報(bào)進(jìn)行宣傳。現(xiàn)讓你設(shè)計(jì)一張如圖1.4-1所示的豎向張貼的海報(bào),要求版心面積為128dm2,上、下兩邊各空2dm,左、右兩邊各空1dm。如何設(shè)計(jì)海報(bào)的尺寸,才能

35、使四周空心面積最???解:設(shè)版心的高為xdm,則版心的寬為dm,此時(shí)四周空白面積為 。 求導(dǎo)數(shù),得。令,解得舍去)。于是寬為。當(dāng)時(shí),<0;當(dāng)時(shí),>0.因此,是函數(shù)的極小值,也是最小值點(diǎn)。所以,當(dāng)版心高為16dm,寬為8dm時(shí),能使四周空白面積最小。答:當(dāng)版心高為16dm,寬為8dm時(shí),海報(bào)四周空白面積最小。例2、飲料瓶大小對飲料公司利潤的影響(1)你是否注意過,市場上等量的小包裝的物品一般比大包裝的要貴些?(2)是不是飲料瓶越大,飲料公司的利潤越大?【背景知識】:某制造商制造并出售球型瓶裝的某種飲料瓶子的制造成本是 分,其中 是瓶子的半徑,單位是厘米。已知每出售1 mL的飲料,制造商

36、可獲利 0.2 分,且制造商能制作的瓶子的最大半徑為 6cm問題:()瓶子的半徑多大時(shí),能使每瓶飲料的利潤最大?()瓶子的半徑多大時(shí),每瓶的利潤最???解:由于瓶子的半徑為,所以每瓶飲料的利潤是 令 解得 (舍去)當(dāng)時(shí),;當(dāng)時(shí),當(dāng)半徑時(shí),它表示單調(diào)遞增,即半徑越大,利潤越高;當(dāng)半徑時(shí), 它表示單調(diào)遞減,即半徑越大,利潤越低(1)半徑為cm 時(shí),利潤最小,這時(shí),表示此種瓶內(nèi)飲料的利潤還不夠瓶子的成本,此時(shí)利潤是負(fù)值(2)半徑為cm時(shí),利潤最大換一個(gè)角度:如果我們不用導(dǎo)數(shù)工具,直接從函數(shù)的圖像上觀察,會(huì)有什么發(fā)現(xiàn)?有圖像知:當(dāng)時(shí),即瓶子的半徑為3cm時(shí),飲料的利潤與飲料瓶的成本恰好相等;當(dāng)時(shí),利潤才

37、為正值當(dāng)時(shí),為減函數(shù),其實(shí)際意義為:瓶子的半徑小于2cm時(shí),瓶子的半徑越大,利潤越小,半徑為cm 時(shí),利潤最?。ㄋ模┱n堂練習(xí)1用總長為14.8m的鋼條制作一個(gè)長方體容器的框架,如果所制作的容器的底面的一邊比另一邊長0.5m,那么高為多少時(shí)容器的容積最大?并求出它的最大容積(高為1.2 m,最大容積)2課本P65 練習(xí)題(五)回顧總結(jié)建立數(shù)學(xué)模型:1利用導(dǎo)數(shù)解決優(yōu)化問題的基本思路:解決數(shù)學(xué)模型作答用函數(shù)表示的數(shù)學(xué)問題優(yōu)化問題用導(dǎo)數(shù)解決數(shù)學(xué)問題優(yōu)化問題的答案2解決優(yōu)化問題的方法:通過搜集大量的統(tǒng)計(jì)數(shù)據(jù),建立與其相應(yīng)的數(shù)學(xué)模型,再通過研究相應(yīng)函數(shù)的性質(zhì),提出優(yōu)化方案,使問題得到解決在這個(gè)過程中,導(dǎo)數(shù)

38、往往是一個(gè)有利的工具。(六)布置作業(yè):1、一條水渠,斷面為等腰梯形,如圖所示,在確定斷面尺寸時(shí),希望在斷面ABCD的面積為定值S時(shí),使得濕周l=AB+BC+CD最小,這樣可使水流阻力小,滲透少,求此時(shí)的高h(yuǎn)和下底邊長b. 解:由梯形面積公式,得S= (AD+BC)h,其中AD=2DE+BC,DE=h,BC=bAD=h+b, S= CD=,AB=CD.l=×2+b由得b=h,代入,l=l=0,h=, 當(dāng)h<時(shí),l<0,h>時(shí),l>0.h=時(shí),l取最小值,此時(shí)b=2、已知矩形的兩個(gè)頂點(diǎn)位于x軸上,另兩個(gè)頂點(diǎn)位于拋物線y 4x2在x軸上方的曲線上,求這種矩形中面積最

39、大者的邊長【解】設(shè)位于拋物線上的矩形的一個(gè)頂點(diǎn)為(x,y),且x 0,y 0,則另一個(gè)在拋物線上的頂點(diǎn)為(x,y),在x軸上的兩個(gè)頂點(diǎn)為(x,0)、(x,0),其中0 x 2設(shè)矩形的面積為S,則S 2 x(4x2),0 x 2由S(x)86 x20,得x ,易知x 是S在(0,2)上的極值點(diǎn),即是最大值點(diǎn),所以這種矩形中面積最大者的邊長為和【點(diǎn)評】應(yīng)用題求解,要正確寫出目標(biāo)函數(shù)并明確題意所給的變量制約條件應(yīng)用題的分析中如確定有最小值,且極小值唯一,即可確定極小值就是最小值五、教后反思:第九課時(shí) 導(dǎo)數(shù)的實(shí)際應(yīng)用(三)一、教學(xué)目標(biāo):1、使利潤最大、用料最省、效率最高等優(yōu)化問題,體會(huì)導(dǎo)數(shù)在解決實(shí)際問

40、題中的作用;2、提高將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力。二、教學(xué)重點(diǎn):利用導(dǎo)數(shù)解決生活中的一些優(yōu)化問題教學(xué)難點(diǎn):利用導(dǎo)數(shù)解決生活中的一些優(yōu)化問題三、教學(xué)方法:探究歸納,講練結(jié)合四、教學(xué)過程(一)、創(chuàng)設(shè)情景生活中經(jīng)常遇到求利潤最大、用料最省、效率最高等問題,這些問題通常稱為優(yōu)化問題通過前面的學(xué)習(xí),我們知道,導(dǎo)數(shù)是求函數(shù)最大(?。┲档挠辛ぞ哌@一節(jié),我們利用導(dǎo)數(shù),解決一些生活中的優(yōu)化問題(二)、新課探究導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用主要是解決有關(guān)函數(shù)最大值、最小值的實(shí)際問題,主要有以下幾個(gè)方面:1、與幾何有關(guān)的最值問題;2、與物理學(xué)有關(guān)的最值問題;3、與利潤及其成本有關(guān)的最值問題;4、效率最值問題。解決優(yōu)化問

41、題的方法:首先是需要分析問題中各個(gè)變量之間的關(guān)系,建立適當(dāng)?shù)暮瘮?shù)關(guān)系,并確定函數(shù)的定義域,通過創(chuàng)造在閉區(qū)間內(nèi)求函數(shù)取值的情境,即核心問題是建立適當(dāng)?shù)暮瘮?shù)關(guān)系。再通過研究相應(yīng)函數(shù)的性質(zhì),提出優(yōu)化方案,使問題得以解決,在這個(gè)過程中,導(dǎo)數(shù)是一個(gè)有力的工具利用導(dǎo)數(shù)解決優(yōu)化問題的基本思路:建立數(shù)學(xué)模型解決數(shù)學(xué)模型作答用函數(shù)表示的數(shù)學(xué)問題優(yōu)化問題用導(dǎo)數(shù)解決數(shù)學(xué)問題優(yōu)化問題的答案(三)、典例分析例1、磁盤的最大存儲(chǔ)量問題計(jì)算機(jī)把數(shù)據(jù)存儲(chǔ)在磁盤上。磁盤是帶有磁性介質(zhì)的圓盤,并有操作系統(tǒng)將其格式化成磁道和扇區(qū)。磁道是指不同半徑所構(gòu)成的同心軌道,扇區(qū)是指被同心角分割所成的扇形區(qū)域。磁道上的定長弧段可作為基本存儲(chǔ)單

42、元,根據(jù)其磁化與否可分別記錄數(shù)據(jù)0或1,這個(gè)基本單元通常被稱為比特(bit)。為了保障磁盤的分辨率,磁道之間的寬度必需大于,每比特所占用的磁道長度不得小于。為了數(shù)據(jù)檢索便利,磁盤格式化時(shí)要求所有磁道要具有相同的比特?cái)?shù)。問題:現(xiàn)有一張半徑為的磁盤,它的存儲(chǔ)區(qū)是半徑介于與之間的環(huán)形區(qū)域(1)是不是越小,磁盤的存儲(chǔ)量越大?(2)為多少時(shí),磁盤具有最大存儲(chǔ)量(最外面的磁道不存儲(chǔ)任何信息)?解:由題意知:存儲(chǔ)量=磁道數(shù)×每磁道的比特?cái)?shù)。 設(shè)存儲(chǔ)區(qū)的半徑介于與R之間,由于磁道之間的寬度必需大于,且最外面的磁道不存儲(chǔ)任何信息,故磁道數(shù)最多可達(dá)。由于每條磁道上的比特?cái)?shù)相同,為獲得最大存儲(chǔ)量,最內(nèi)一條

43、磁道必須裝滿,即每條磁道上的比特?cái)?shù)可達(dá)。所以,磁盤總存儲(chǔ)量× (1)它是一個(gè)關(guān)于的二次函數(shù),從函數(shù)解析式上可以判斷,不是越小,磁盤的存儲(chǔ)量越大(2)為求的最大值,計(jì)算令,解得當(dāng)時(shí),;當(dāng)時(shí),因此時(shí),磁盤具有最大存儲(chǔ)量。此時(shí)最大存儲(chǔ)量為例2、汽油的使用效率何時(shí)最高 我們知道,汽油的消耗量(單位:L)與汽車的速度(單位:km/h)之間有一定的關(guān)系,汽油的消耗量是汽車速度的函數(shù)根據(jù)你的生活經(jīng)驗(yàn),思考下面兩個(gè)問題:(1)是不是汽車的速度越快,汽車的消耗量越大?(2)“汽油的使用率最高”的含義是什么?分析:研究汽油的使用效率(單位:L/m)就是研究秋游消耗量與汽車行駛路程的比值如果用表示每千米平

44、均的汽油消耗量,那么,其中,表示汽油消耗量(單位:L),表示汽油行駛的路程(單位:km)這樣,求“每千米路程的汽油消耗量最少”,就是求的最小值的問題 通過大量的統(tǒng)計(jì)數(shù)據(jù),并對數(shù)據(jù)進(jìn)行分析、研究,人們發(fā)現(xiàn),汽車在行駛過程中,汽油平均消耗率(即每小時(shí)的汽油消耗量,單位:L/h)與汽車行駛的平均速度(單位:km/h)之間有如圖所示的函數(shù)關(guān)系從圖中不能直接解決汽油使用效率最高的問題因此,我們首先需要將問題轉(zhuǎn)化為汽油平均消耗率(即每小時(shí)的汽油消耗量,單位:L/h)與汽車行駛的平均速度(單位:km/h)之間關(guān)系的問題,然后利用圖像中的數(shù)據(jù)信息,解決汽油使用效率最高的問題 解:因?yàn)?這樣,問題就轉(zhuǎn)化為求的最

45、小值從圖象上看,表示經(jīng)過原點(diǎn)與曲線上點(diǎn)的直線的斜率進(jìn)一步發(fā)現(xiàn),當(dāng)直線與曲線相切時(shí),其斜率最小在此切點(diǎn)處速度約為90因此,當(dāng)汽車行駛距離一定時(shí),要使汽油的使用效率最高,即每千米的汽油消耗量最小,此時(shí)的車速約為90從數(shù)值上看,每千米的耗油量就是圖中切線的斜率,即,約為 L例3、在經(jīng)濟(jì)學(xué)中,生產(chǎn)x單位產(chǎn)品的成本稱為成本函數(shù)同,記為C(x),出售x單位產(chǎn)品的收益稱為收益函數(shù),記為R(x),R(x)C(x)稱為利潤函數(shù),記為P(x)。(1)、如果C(x),那么生產(chǎn)多少單位產(chǎn)品時(shí),邊際最低?(邊際成本:生產(chǎn)規(guī)模增加一個(gè)單位時(shí)成本的增加量)(2)、如果C(x)=50x10000,產(chǎn)品的單價(jià)P1000.01x

46、,那么怎樣定價(jià),可使利潤最大?變式:已知某商品生產(chǎn)成本C與產(chǎn)量q的函數(shù)關(guān)系式為C=100+4q,價(jià)格p與產(chǎn)量q的函數(shù)關(guān)系式為求產(chǎn)量q為何值時(shí),利潤L最大?分析:利潤L等于收入R減去成本C,而收入R等于產(chǎn)量乘價(jià)格由此可得出利潤L與產(chǎn)量q的函數(shù)關(guān)系式,再用導(dǎo)數(shù)求最大利潤解:收入,利潤令,即,求得唯一的極值點(diǎn)答:產(chǎn)量為84時(shí),利潤L最大(四)、課堂練習(xí):在甲、乙兩個(gè)工廠,甲廠位于一直線河岸的岸邊A處,乙廠與甲廠在河的同側(cè),乙廠位于離河岸40 km的B處,乙廠到河岸的垂足D與A相距50 km,兩廠要在此岸邊合建一個(gè)供水站C,從供水站到甲廠和乙廠的水管費(fèi)用分別為每千米3a元和5a元,問供水站C建在岸邊何

47、處才能使水管費(fèi)用最???解析 根據(jù)題意知,只有點(diǎn)C在線段AD上某一適當(dāng)位置,才能使總運(yùn)費(fèi)最省,設(shè)C點(diǎn)距D點(diǎn)x km,則BD=40,AC=50x, BC=又設(shè)總的水管費(fèi)用為y元,依題意有 y=30(5ax)+5a (0x50)y=3a+,令y=0,解得x=30在(0,50)上,y只有一個(gè)極值點(diǎn),根據(jù)實(shí)際問題的意義,函數(shù)在x=30(km)處取得最小值,此時(shí)AC=50x=20(km)供水站建在A、D之間距甲廠20 km處,可使水管費(fèi)用最省 (五)回顧總結(jié)建立數(shù)學(xué)模型:1利用導(dǎo)數(shù)解決優(yōu)化問題的基本思路:解決數(shù)學(xué)模型作答用函數(shù)表示的數(shù)學(xué)問題優(yōu)化問題用導(dǎo)數(shù)解決數(shù)學(xué)問題優(yōu)化問題的答案2解決優(yōu)化問題的方法:通過

48、搜集大量的統(tǒng)計(jì)數(shù)據(jù),建立與其相應(yīng)的數(shù)學(xué)模型,再通過研究相應(yīng)函數(shù)的性質(zhì),提出優(yōu)化方案,使問題得到解決在這個(gè)過程中,導(dǎo)數(shù)往往是一個(gè)有利的工具。(六)布置作業(yè):1、一書店預(yù)計(jì)一年內(nèi)要銷售某種書15萬冊,欲分幾次訂貨,如果每次訂貨要付手續(xù)費(fèi)30元,每千冊書存放一年要耗庫費(fèi)40元,并假設(shè)該書均勻投放市場,問此書店分幾次進(jìn)貨、每次進(jìn)多少冊,可使所付的手續(xù)費(fèi)與庫存費(fèi)之和最少?【解】假設(shè)每次進(jìn)書x千冊,手續(xù)費(fèi)與庫存費(fèi)之和為y元,由于該書均勻投放市場,則平均庫存量為批量之半,即,故有y ×30×40,y20,令y0,得x 15,且y,f(15)0,所以當(dāng)x 15時(shí),y取得極小值,且極小值唯一,故 當(dāng)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論