高中數(shù)學(xué)復(fù)習(xí)專題講座等差數(shù)列等比數(shù)列性質(zhì)的靈活運(yùn)用_第1頁(yè)
高中數(shù)學(xué)復(fù)習(xí)專題講座等差數(shù)列等比數(shù)列性質(zhì)的靈活運(yùn)用_第2頁(yè)
高中數(shù)學(xué)復(fù)習(xí)專題講座等差數(shù)列等比數(shù)列性質(zhì)的靈活運(yùn)用_第3頁(yè)
高中數(shù)學(xué)復(fù)習(xí)專題講座等差數(shù)列等比數(shù)列性質(zhì)的靈活運(yùn)用_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、高中數(shù)學(xué)復(fù)習(xí)專題講座等差數(shù)列、等比數(shù)列性質(zhì)的靈活運(yùn)用高考要求 等差、等比數(shù)列的性質(zhì)是等差、等比數(shù)列的概念,通項(xiàng)公式,前n項(xiàng)和公式的引申 應(yīng)用等差、等比數(shù)列的性質(zhì)解題,往往可以回避求其首項(xiàng)和公差或公比,使問(wèn)題得到整體地解決,能夠在運(yùn)算時(shí)達(dá)到運(yùn)算靈活,方便快捷的目的,故一直受到重視 高考中也一直重點(diǎn)考查這部分內(nèi)容 重難點(diǎn)歸納 1 等差、等比數(shù)列的性質(zhì)是兩種數(shù)列基本規(guī)律的深刻體現(xiàn),是解決等差、等比數(shù)列問(wèn)題的既快捷又方便的工具,應(yīng)有意識(shí)去應(yīng)用 2 在應(yīng)用性質(zhì)時(shí)要注意性質(zhì)的前提條件,有時(shí)需要進(jìn)行適當(dāng)變形 3 “巧用性質(zhì)、減少運(yùn)算量”在等差、等比數(shù)列的計(jì)算中非常重要,但用“基本量法”并樹(shù)立“目標(biāo)意識(shí)”,“

2、需要什么,就求什么”,既要充分合理地運(yùn)用條件,又要時(shí)刻注意題的目標(biāo),往往能取得與“巧用性質(zhì)”解題相同的效果 典型題例示范講解 例1已知函數(shù)f(x)= (x<2) (1)求f(x)的反函數(shù)f-1(x);(2)設(shè)a1=1, =f-1(an)(nN*),求an;(3)設(shè)Sn=a12+a22+an2,bn=Sn+1Sn是否存在最小正整數(shù)m,使得對(duì)任意nN*,有bn<成立?若存在,求出m的值;若不存在,說(shuō)明理由 命題意圖 本題是一道與函數(shù)、數(shù)列有關(guān)的綜合性題目,著重考查學(xué)生的邏輯分析能力 知識(shí)依托 本題融合了反函數(shù),數(shù)列遞推公式,等差數(shù)列基本問(wèn)題、數(shù)列的和、函數(shù)單調(diào)性等知識(shí)于一爐,結(jié)構(gòu)巧妙,

3、形式新穎,是一道精致的綜合題 錯(cuò)解分析 本題首問(wèn)考查反函數(shù),反函數(shù)的定義域是原函數(shù)的值域,這是一個(gè)易錯(cuò)點(diǎn),(2)問(wèn)以數(shù)列為橋梁求an,不易突破 技巧與方法 (2)問(wèn)由式子得=4,構(gòu)造等差數(shù)列,從而求得an,即“借雞生蛋”是求數(shù)列通項(xiàng)的常用技巧;(3)問(wèn)運(yùn)用了函數(shù)的思想 解 (1)設(shè)y=,x<2,x=,即y=f-1(x)= (x>0)(2),是公差為4的等差數(shù)列,a1=1, =+4(n1)=4n3,an>0,an= (3)bn=Sn+1Sn=an+12=,由bn<,得m>,設(shè)g(n)= ,g(n)= 在nN*上是減函數(shù),g(n)的最大值是g(1)=5,m>5,

4、存在最小正整數(shù)m=6,使對(duì)任意nN*有bn<成立 例2設(shè)等比數(shù)列an的各項(xiàng)均為正數(shù),項(xiàng)數(shù)是偶數(shù),它的所有項(xiàng)的和等于偶數(shù)項(xiàng)和的4倍,且第二項(xiàng)與第四項(xiàng)的積是第3項(xiàng)與第4項(xiàng)和的9倍,問(wèn)數(shù)列l(wèi)gan的前多少項(xiàng)和最大?(lg2=0 3,lg3=0 4)命題意圖 本題主要考查等比數(shù)列的基本性質(zhì)與對(duì)數(shù)運(yùn)算法則,等差數(shù)列與等比數(shù)列之間的聯(lián)系以及運(yùn)算、分析能力 知識(shí)依托 本題須利用等比數(shù)列通項(xiàng)公式、前n項(xiàng)和公式合理轉(zhuǎn)化條件,求出an;進(jìn)而利用對(duì)數(shù)的運(yùn)算性質(zhì)明確數(shù)列l(wèi)gan為等差數(shù)列,分析該數(shù)列項(xiàng)的分布規(guī)律從而得解 錯(cuò)解分析 題設(shè)條件中既有和的關(guān)系,又有項(xiàng)的關(guān)系,條件的正確轉(zhuǎn)化是關(guān)鍵,計(jì)算易出錯(cuò);而對(duì)數(shù)的運(yùn)

5、算性質(zhì)也是易混淆的地方 技巧與方法 突破本題的關(guān)鍵在于明確等比數(shù)列各項(xiàng)的對(duì)數(shù)構(gòu)成等差數(shù)列,而等差數(shù)列中前n項(xiàng)和有最大值,一定是該數(shù)列中前面是正數(shù),后面是負(fù)數(shù),當(dāng)然各正數(shù)之和最大;另外,等差數(shù)列Sn是n的二次函數(shù),也可由函數(shù)解析式求最值 解法一 設(shè)公比為q,項(xiàng)數(shù)為2m,mN*,依題意有化簡(jiǎn)得 設(shè)數(shù)列l(wèi)gan前n項(xiàng)和為Sn,則Sn=lga1+lga1q2+lga1qn1=lga1n·q1+2+(n1)=nlga1+n(n1)·lgq=n(2lg2+lg3)n(n1)lg3=()·n2+(2lg2+lg3)·n可見(jiàn),當(dāng)n=時(shí),Sn最大 而=5,故lgan的前5

6、項(xiàng)和最大 解法二 接前,,于是lgan=lg108()n1=lg108+(n1)lg,數(shù)列l(wèi)gan是以lg108為首項(xiàng),以lg為公差的等差數(shù)列,令lgan0,得2lg2(n4)lg30,n=5 5 由于nN*,可見(jiàn)數(shù)列l(wèi)gan的前5項(xiàng)和最大 例3等差數(shù)列an的前n項(xiàng)的和為30,前2m項(xiàng)的和為100,求它的前3m項(xiàng)的和為_(kāi) 解法一 將Sm=30,S2m=100代入Sn=na1+d,得 解法二 由知,要求S3m只需求ma1+,將得ma1+ d=70,S3m=210 解法三 由等差數(shù)列an的前n項(xiàng)和公式知,Sn是關(guān)于n的二次函數(shù),即Sn=An2+Bn(A、B是常數(shù)) 將Sm=30,S2m=100代入,得,S3m=A·(3m)2+B·3m=210解法四 S3m=S2m+a2m+1+a2m+2+a3m=S2m+(a1+2md)+(am+2md)=S2m+(a1+am)+m·2md=S2m+Sm+2m2d 由解法一知d=,代入得S3m=210 解法五 根據(jù)等差數(shù)列性質(zhì)知 Sm,S2mSm,S3mS2m也成等差數(shù)列,從而有 2(S2mSm)=Sm+(S3mS2m)S3m=3(S2mSm)=210解法六 Sn=na1+d,=a1+d點(diǎn)(n, )是直線y=+a1上的一串點(diǎn),由三點(diǎn)(m,),(2m, ),(3m, )

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論