比較線性模型和Probit模型Logit模型_第1頁
比較線性模型和Probit模型Logit模型_第2頁
比較線性模型和Probit模型Logit模型_第3頁
比較線性模型和Probit模型Logit模型_第4頁
比較線性模型和Probit模型Logit模型_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、研究生考試錄取相關(guān)因素的實驗報告一, 研究目的通過對南開大學(xué)國際經(jīng)濟研究所1999級研究生考試分數(shù)及錄取情況的研究,引入錄取與未錄取這一虛擬變量,比較線性概率模型與Probit模型,Logit模型,預(yù)測正確率。二, 模型設(shè)定表1,南開大學(xué)國際經(jīng)濟研究所1999級研究生考試分數(shù)及錄取情況見數(shù)據(jù)表obsYSCOREobsYSCOREobsYSCORE114013403326702752140135033268027331392360332690273413873703317002725138438033071026761379390328720266713784003287302638137841

2、032874026191376420321750260101371430321760256111362440318770252121362450318780252131361460316790245140359470308800243150358480308810242161356490304820241170356500303830239180355510303840235190354520299850232200354530297860228210353540294870219220350550293880219230349560293890214240349570292900210250

3、348580291910204260347590291920198270347600287930189280344610286940188290339620286950182300338630282960166310338640282970123320336650282330334660278定義變量SCORE :考生考試分數(shù);Y :考生錄取為1,未錄取為0。 上圖為樣本觀測值。1 線性概率模型根據(jù)上面資料建立模型用Eviews得到回歸結(jié)果如圖:Dependent Variable: YMethod: Least SquaresDate: 12/10/10 Time: 20:38Sample:

4、 1 97Included observations: 97VariableCoefficientStd. Errort-StatisticProb.  C-0.8474070.159663-5.3074760.0000SCORE0.0032970.0005216.3259700.0000R-squared0.296390    Mean dependent var0.144330Adjusted R-squared0.288983    S.D. dependent var0.353250S.

5、E. of regression0.297866    Akaike info criterion0.436060Sum squared resid8.428818    Schwarz criterion0.489147Log likelihood-19.14890    F-statistic40.01790Durbin-Watson stat0.359992    Prob(F-statistic)0.000000參數(shù)估計結(jié)果為:

6、-0.847407+0.003297 Se=(0.159663)( 0.000521) t=(-5.307476) (6.325970) p=(0.0000) (0.0000) 預(yù)測正確率:Forecast: YFActual: YForecast sample: 1 97Included observations: 97Root Mean Squared Error0.294780Mean Absolute Error     0.233437Mean Absolute Percentage Error8.689503Theil Inequa

7、lity Coefficient 0.475786     Bias Proportion        0.000000     Variance Proportion 0.294987     Covariance Proportion 0.7050132.Logit模型Dependent Variable: YMethod: ML

8、- Binary Logit (Quadratic hill climbing)Date: 12/10/10 Time: 21:38Sample: 1 97Included observations: 97Convergence achieved after 11 iterationsCovariance matrix computed using second derivativesVariableCoefficientStd. Errorz-StatisticProb.  C-243.7362125.5564-1.9412480.0522SCORE0.6794410.3

9、504921.9385360.0526Mean dependent var0.144330    S.D. dependent var0.353250S.E. of regression0.115440    Akaike info criterion0.123553Sum squared resid1.266017    Schwarz criterion0.176640Log likelihood-3.992330    Hanna

10、n-Quinn criter.0.145019Restr. log likelihood-40.03639    Avg. log likelihood-0.041158LR statistic (1 df)72.08812    McFadden R-squared0.900282Probability(LR stat)0.000000Obs with Dep=083     Total obs97Obs with Dep=114得Logit模型估計結(jié)果如下 pi

11、 = F(yi) = 拐點坐標 (358.7, 0.5)其中Y=-243.7362+0.6794X預(yù)測正確率Forecast: YFActual: YForecast sample: 1 97Included observations: 97Root Mean Squared Error0.114244Mean Absolute Error     0.025502Mean Absolute Percentage Error1.275122Theil Inequality Coefficient 0.153748  

12、;   Bias Proportion        0.000000     Variance Proportion 0.025338     Covariance Proportion 0.9746623.Probit模型Dependent Variable: YMethod: ML - Binary Probit (Quadratic hill climbing

13、)Date: 12/10/10 Time: 21:40Sample: 1 97Included observations: 97Convergence achieved after 11 iterationsCovariance matrix computed using second derivativesVariableCoefficientStd. Errorz-StatisticProb.  C-144.456070.19809-2.0578330.0396SCORE0.4028680.1961862.0535040.0400Mean dependent var0.

14、144330    S.D. dependent var0.353250S.E. of regression0.116277    Akaike info criterion0.122406Sum squared resid1.284441    Schwarz criterion0.175493Log likelihood-3.936702    Hannan-Quinn criter.0.143872Restr. log likel

15、ihood-40.03639    Avg. log likelihood-0.040585LR statistic (1 df)72.19938    McFadden R-squared0.901672Probability(LR stat)0.000000Obs with Dep=083     Total obs97Obs with Dep=114Probit模型最終估計結(jié)果是 pi = F(yi) = F (-144.456 + 0.4029 xi) 拐點

16、坐標 (358.5, 0.5)預(yù)測正確率Forecast: YFActual: YForecast sample: 1 97Included observations: 97Root Mean Squared Error0.115072Mean Absolute Error     0.025387Mean Absolute Percentage Error1.216791Theil Inequality Coefficient 0.154476     Bias Proportion        0.000084     Variance Proportion 0.020837     Covariance Proportion 0.979080預(yù)測正確率結(jié)論:線性概率模型RMSE=0.294780 MAE=0.233437 MAPE=8.689503 Logit模型 RMSE=0.114244

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論