




下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、第一講 集合的含義與表示課標(biāo)考綱解讀1理解集合的概念,會(huì)判斷一組對(duì)象能否構(gòu)成集合。2了解元素與集合的“屬于”關(guān)系,會(huì)判斷某一元素屬于或不屬于某一集合,掌握表示“屬于”與“不屬于”的符號(hào)“”與“”。3了解常用數(shù)集及其記法。4掌握集合元素的特征,并能運(yùn)用它們解題。5理解列舉法和描述法的意義,掌握這兩種集合的表示方法和特征,并會(huì)運(yùn)用它們正確地表示一些簡(jiǎn)單的集合。一、考點(diǎn)知識(shí)清單:1.一般的,我們把 統(tǒng)稱為元素,把 叫做集合,簡(jiǎn)稱 。2.只要構(gòu)成兩個(gè)集合的 ,我們就稱這兩個(gè)集合是相等的。3.元素與集合之間存在的兩種關(guān)系:如果是集合A的元素,就說(shuō) 集合A,記作 ;如果不是集合A中的元素,就說(shuō) 集合A,記
2、作 。4.集合中的元素具有三個(gè)特性: 、 、 。確定性:集合中的元素是確定的,即任何一個(gè)對(duì)象都能說(shuō)明他是或不是某個(gè)集合的元素,兩者情況必居其一且僅居其一,不會(huì)模棱兩可。例如:“著名的科學(xué)家”“與接近的數(shù)”等都不能組成一個(gè)集合;互異性:集合中的元素是互不相同的,即同一元素在同一集合中,不能重復(fù)出現(xiàn);無(wú)序性:在一個(gè)集合中,元素之間都是平等的,它們都充當(dāng)集合中的一員,無(wú)先后次序之說(shuō),無(wú)高低貴賤之分。5.數(shù)學(xué)中一些常用的數(shù)集及其記法: (1) 稱為非負(fù)整數(shù)集(或自然數(shù)集),記作 ; (2) 稱為正整數(shù)集,記作 ; (3) 稱為整數(shù)集,記作 ; (4) 稱為有理數(shù)集,記作 ; (5) 稱為實(shí)數(shù)集,記作
3、。6.常見(jiàn)的集合表示方法有 、 、 。例:列舉法:正整數(shù)集=;描述法:或。7.把集合中的元素 的方法叫做列舉法,例:正整數(shù)集=。8.用集合所含元素的 的方法叫做描述法,其形式:或。9.集合的分類: 、 、 。10奇數(shù)集: ;偶數(shù)集合: 。二、典例分析考點(diǎn)一 集合的概念命題規(guī)律:判斷一組對(duì)象是否構(gòu)成集合例1、下列各組對(duì)象哪些能構(gòu)成一個(gè)集合?(1)著名的數(shù)學(xué)家;(2)某校2007年在校的所有高個(gè)子同學(xué);(3)不超過(guò)20的非負(fù)數(shù);(4)方程描述法:在實(shí)數(shù)范圍內(nèi)的解;(5)直角坐標(biāo)平面內(nèi)第一象限的一些點(diǎn);(6)的近似值的全體。針對(duì)訓(xùn)練:1下列各組對(duì)象不能構(gòu)成集合的是( )A某校大于50歲的教師 B.某
4、校30歲的教師 C.某校的年輕教師 D.某校的女教師2.對(duì)于以下說(shuō)法:接近于0的數(shù)的全體構(gòu)成一個(gè)集合;正三角形的全體構(gòu)成一個(gè)集合;未來(lái)世界的高科技產(chǎn)品構(gòu)成一個(gè)集合;不大于3的所有自然數(shù)構(gòu)成一個(gè)集合。正確的是( )A B. C. D.3.由實(shí)數(shù),所組成的集合中,最多含有元素的個(gè)數(shù)為( )A2 B.3 C.4 D.5考點(diǎn)二 元素與集合之間的關(guān)系命題規(guī)律:(1)判定元素與集合之間的關(guān)系;(2)考查正確運(yùn)用元素與集合之間的從屬關(guān)系符號(hào)“”與“”,以及特殊數(shù)集的符號(hào)。例2、用符號(hào)“”或“”填空:(1)2 ,3 ;(2)4 ,5 ;(3)(-1,1) ,(-1,1) 。針對(duì)訓(xùn)練:1.給出下列關(guān)系:;其中正
5、確的個(gè)數(shù)為( )A1 B.2 C.3 D.42設(shè),試問(wèn)10,102,103是否屬于M?例3、設(shè)集合,。若,試判斷與A,B的關(guān)系。例4、數(shù)集A滿足條件:若,則。若,求集合A中的其他元素??键c(diǎn)三 集合中元素的特征命題規(guī)律:(1)利用集合元素的三性(確定性、互異性、無(wú)序性)分析解決問(wèn)題;(2)解題后檢驗(yàn)元素是否滿足集合元素的三性。例5、若集合A的四個(gè)元素x,y,z,w為邊長(zhǎng)構(gòu)成一個(gè)四邊形,那么這個(gè)四邊形可能是( )A梯形 B.平行四邊形 C.菱形 D.矩形針對(duì)訓(xùn)練:1.已知集合A=,若,求實(shí)數(shù)的值。2.已知,求實(shí)數(shù)的值。例6、判斷下列說(shuō)法是否正確,并說(shuō)明理由。(1)1,這些數(shù)組成的集合有五個(gè)元素;(
6、2)由a,b,c組成的集合與由b,a,c組成的集合是同一個(gè)集合。例7、含有三個(gè)實(shí)數(shù)的集合可表示為,也可表示為。求的值??键c(diǎn)四 集合的表示方法命題規(guī)律:(1)用列舉法表示集合;(2)用描述法表示集合;(3)選擇適當(dāng)?shù)姆椒ū硎炯希唬?)集合的不同表示方法的相互轉(zhuǎn)化。例8、用列舉法表示下列集合:(1)不大于10的非負(fù)偶數(shù)集;(2)自然數(shù)中不大于10的質(zhì)數(shù)集;(3)由所確定的實(shí)數(shù)集合。例9、用描述法表示下列集合:(1)使有意義的實(shí)數(shù)的集合;(2)坐標(biāo)平面上第一、第三象限上的點(diǎn)的集合;(3)函數(shù)的圖象上所有點(diǎn)的集合;(4)方程的解集。針對(duì)訓(xùn)練:1.用適當(dāng)?shù)姆椒ū硎鞠铝屑希海?)絕對(duì)值不大于2的整數(shù);
7、(2)在直角坐標(biāo)平面上不在一、三象限內(nèi)的點(diǎn);(3)方程的解;(4)例10、(1)已知集合,求M;(2)已知集合,求C。例11、下面三個(gè)集合:;。(1)它們是不是相同的集合?(2)它們各自的含義是什么?考點(diǎn)五 創(chuàng)新、拓展、探究命題規(guī)律:給出定義求集合或求滿足條件的集合。例12、設(shè)P,Q為兩個(gè)非空實(shí)數(shù)集合,定義集合P+Q=,若P=0,2,5,Q=1,2,6,則P+Q中元素的個(gè)數(shù)是( )A9 B.8 C.7 D.6例13、已知集合A=。(1)若A中只有一個(gè)元素,求的值;(2)若A中最多有一個(gè)元素,求的取值范圍;(3)若A中至少有一個(gè)元素,求的取值范圍。課堂訓(xùn)練1、下列各組對(duì)象中不能形成集合的有高三(
8、1)全體女生李佳的所有好朋友接近于0的數(shù)的全體正三角形的全體所有的著名科學(xué)家中國(guó)的所有大河比小王高的所有人小于5的實(shí)數(shù)2、用符號(hào)“”或“”填空0N1N0Q 4 y|y=x8 6 y|y= 3R0.5N3ZZ2 x|x< (1,1) y|y= QQ3、(x , y)| y=x2_1, |x|2,xZ 用列舉法表示應(yīng)為_(kāi).4、已知全集M=且則M=_A、2,3 B、1,2,3,4C、1,2,3,6 D、-1,2,3,45、下列集合中表示空集的是( )Ax|x+3=3 B(x,y)| 6、定義ABx|xA,且xB,若M1,2,3,4,5,N2,3,6,則NM等于() AMBNC1,4,5D67、數(shù)集2a,a22a中,a的取值范圍是_.4已知下列集合: (1)=n | n = 2k+1,kN ,k5; (2)=x | x = 2k, kN, k3; (3)=x | x = 4k1,或x = 4k1,kk3; (4)=y | y=1,且x0, ; (5)=(x, y) | xy = 6 , x; ()用列舉法表示上述各集合; ()對(duì)集合,如果使kZ,那么,所表示的集合分別是什么?9.用描述法表示
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 臨床試驗(yàn)結(jié)果分析原則考核試卷
- 農(nóng)機(jī)租賃市場(chǎng)定位與租賃服務(wù)網(wǎng)絡(luò)布局分析考核試卷
- 講座教育的評(píng)價(jià)體系考核試卷
- 交通規(guī)劃與災(zāi)害恢復(fù)重建規(guī)劃協(xié)調(diào)考核試卷
- 產(chǎn)科病房護(hù)士工作總結(jié)10篇
- 會(huì)計(jì)專業(yè)考試初級(jí)會(huì)計(jì)實(shí)務(wù)試卷與參考答案(2025年)
- 湖南省名校聯(lián)考聯(lián)合體2024-2025學(xué)年高一下學(xué)期第二次聯(lián)考物理試卷(A)(含解析)
- 歌曲活動(dòng)策劃方案
- 植樹(shù)節(jié)汽車養(yǎng)護(hù)活動(dòng)方案
- 民政服務(wù)活動(dòng)方案
- 上海金山區(qū)屬國(guó)有企業(yè)招聘筆試真題2024
- 2025至2030中國(guó)生石灰行業(yè)市場(chǎng)深度調(diào)研及發(fā)展趨勢(shì)與投資方向報(bào)告
- 2025秋二年級(jí)上冊(cè)語(yǔ)文上課課件 2 我是什么
- 2024年 紹興市交通控股集團(tuán)公司招聘考試筆試真題試題含答案
- 維保人員培訓(xùn)管理制度
- 超限模板及高支模安全專項(xiàng)施工方案(論證后)
- 大隱靜脈患者的護(hù)理查房講課件
- 2025-2030年中國(guó)管道運(yùn)輸行業(yè)市場(chǎng)深度分析及發(fā)展前景與投資研究報(bào)告
- 2025-2030年中國(guó)汽車檢測(cè)行業(yè)市場(chǎng)深度調(diào)研及競(jìng)爭(zhēng)格局與投資發(fā)展?jié)摿ρ芯繄?bào)告
- 特性設(shè)備安全培訓(xùn)課件
- 九師聯(lián)盟2024-2025學(xué)年高二下學(xué)期6月摸底聯(lián)考英語(yǔ)試題(含答案)
評(píng)論
0/150
提交評(píng)論