




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、 選題依據(jù)選題依據(jù) 本節(jié)課是選自同濟(jì)大學(xué)第六版高等數(shù)學(xué)第一章第二節(jié)。 極限是本課的重點(diǎn)難點(diǎn),它是后面學(xué)習(xí)連續(xù)、導(dǎo)數(shù)乃至多元函數(shù)的基礎(chǔ)。教學(xué)對(duì)象教學(xué)對(duì)象 合訓(xùn)本課大一新生有一定的數(shù)學(xué)基礎(chǔ),認(rèn)識(shí)數(shù)列,但對(duì)極限思維初次接觸。大學(xué)數(shù)學(xué)相對(duì)高中數(shù)學(xué),增加了數(shù)學(xué)語(yǔ)言描述,更顯抽象,要培養(yǎng)學(xué)員的抽象能力。教學(xué)重難點(diǎn)教學(xué)重難點(diǎn)教學(xué)重點(diǎn):數(shù)列極限的定義和判斷教學(xué)難點(diǎn):理解數(shù)列極限的定義教學(xué)方法教學(xué)方法講授與討論教學(xué)進(jìn)程教學(xué)進(jìn)程導(dǎo)入導(dǎo)入導(dǎo)入導(dǎo)入導(dǎo)入小結(jié)看到極限,你想到了什么?看到極限,你想到了什么?討論劉徽九章算書(shū)注中言:“割之彌細(xì),所失彌少,割之又割,以至于不可分割,則與圓合體而無(wú)所失矣?!备顖A術(shù),即是不斷倍增
2、內(nèi)接正多邊形的邊數(shù),求出圓面積的方法。截丈問(wèn)題截丈問(wèn)題引例1一尺之錘,日取其半,永無(wú)截盡。rn如圖所示 , 可知nAnnnrcossin2),5,4, 3(n當(dāng) n 無(wú)限增大時(shí), 無(wú)限逼近 S . 推導(dǎo)至第 n天截丈的總長(zhǎng)記為 增加時(shí),截丈的總長(zhǎng)度逐漸地接近于1.,nS當(dāng)天數(shù)n 不斷地劉徽的劉徽的割圓術(shù)割圓術(shù)引例2劉徽九章算書(shū)注中言:“割之彌細(xì),所失彌少,割之又割,以至于不可分割,則與圓合體而無(wú)所失矣?!备顖A術(shù),即是不斷倍增內(nèi)接正多邊形的邊數(shù),求出圓面積的方法。rn如圖所示 , 可知nAnnnrcossin2),5,4, 3(n當(dāng) n 無(wú)限增大時(shí), 無(wú)限逼近 S . 推導(dǎo)設(shè)有半徑為 r 的圓,
3、nA逼近圓面積 S .其內(nèi)接正 n 邊形的面積記為當(dāng) 內(nèi)接正n 邊形的邊數(shù)增加時(shí),它的面積逐漸地?cái)?shù)學(xué)語(yǔ)言描述數(shù)學(xué)語(yǔ)言描述概括,0,N正整數(shù)當(dāng) n N 時(shí),SAn總有舉例劉徽九章算書(shū)注中言:“割之彌細(xì),所失彌少,割之又割,以至于不可分割,則與圓合體而無(wú)所失矣?!备顖A術(shù),即是不斷倍增內(nèi)接正多邊形的邊數(shù),求出圓面積的方法。定義定義:自變量取正整數(shù)的函數(shù)稱為數(shù)列,記作)(nfxn或.nxnx稱為通項(xiàng)(一般項(xiàng)) .若數(shù)列nx及常數(shù) a 有下列關(guān)系 :,0,N正數(shù)當(dāng) n N 時(shí), 總有記作此時(shí)也稱數(shù)列收斂 , 否則稱數(shù)列發(fā)散 .幾何解釋 :aaa)(axan)(Nn 即),(aUxn)(Nn axnnli
4、m或)(naxn1Nx2Nxaxn則稱該數(shù)列nx的極限為 a ,例如,,1,43,32,21nn1nnxn)(1n,) 1(,43,34,21,21nnnnnxnn1) 1()(1n,2,8,4,2nnnx2)(n,) 1( ,1,1,11n1) 1(nnx趨勢(shì)不定收 斂發(fā) 散例例1. 已知,) 1(nnxnn證明數(shù)列nx的極限為1. 證證: 1nx1) 1(nnnn1,0欲使,1nx即,1n只要1n因此 , 取, 1N則當(dāng)Nn 時(shí), 就有1) 1(nnn故1) 1(limlimnnxnnnn例例2. 已知,) 1() 1(2nxnn證明.0limnnx證證:0nx0) 1() 1(2nn2)
5、 1(1n11n, ) 1 ,0(欲使,0nx只要,11n即n取, 11N則當(dāng)Nn 時(shí), 就有,0nx故0) 1() 1(limlim2nxnnnn,0111nnnx故也可取1N也可由2) 1(10nnx. 11N 與 有關(guān), 但不唯一.不一定取最小的 N .說(shuō)明說(shuō)明: 取11N例例3. 設(shè),1q證明等比數(shù)列,112nqqq證證:0nx01nq, ) 1 ,0(欲使,0nx只要,1nq即,lnln) 1(qn亦即因此 , 取qNlnln1, 則當(dāng) n N 時(shí), 就有01nq故0lim1nnq.lnln1qn的極限為0 .1nq劉徽的劉徽的割圓術(shù)割圓術(shù)劉徽九章算書(shū)注中言:“割之彌細(xì),所失彌少,割之又割,以至于不可分割,則與圓合體而無(wú)所失矣。”割圓術(shù),即是不斷倍增內(nèi)接正多邊形的邊數(shù),求出圓面積的方法。劉徽的劉徽的割圓術(shù)割圓術(shù)導(dǎo)入劉徽九章算書(shū)注中言:“割之彌細(xì),所失彌少,割之又割,以至于不可分割,則與圓合體而無(wú)所失矣?!备顖A術(shù),即是不斷倍增內(nèi)接正多邊形的邊數(shù),求出圓面積的方法。劉徽的劉徽的割圓術(shù)割圓術(shù)導(dǎo)入劉徽九章算書(shū)注中言:“割之彌細(xì),所失彌少,割之又割,以至于不可分割,則與圓合體而無(wú)所失矣?!备顖A術(shù),即是不斷倍增內(nèi)接正多邊形的邊數(shù),求出圓面積的方法。致謝致謝: : 首先,非常感
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 基層醫(yī)療衛(wèi)生機(jī)構(gòu)信息化建設(shè)中的醫(yī)療信息化與疾病預(yù)防控制報(bào)告
- 新零售背景下便利店智能化供應(yīng)鏈金融創(chuàng)新報(bào)告
- 薄膜干涉題目及答案
- 安全質(zhì)量培訓(xùn)試題及答案
- 咖啡連鎖品牌擴(kuò)張戰(zhàn)略布局報(bào)告:2025年市場(chǎng)拓展與品牌戰(zhàn)略優(yōu)化方案創(chuàng)新
- 安全護(hù)理的試題及答案
- 單位音樂(lè)培訓(xùn)課件模板
- 中國(guó)剪紙創(chuàng)意畫(huà)課件視頻
- 中國(guó)刺繡教學(xué)課件
- 腫瘤患者化療期間的護(hù)理
- 混凝土襯砌(二襯)專項(xiàng)施工方案
- DB64-T 1999.1-2024 國(guó)土空間生態(tài)修復(fù)工程建設(shè)標(biāo)準(zhǔn) 第1部分:國(guó)土整治
- 湖北省黃岡市黃州區(qū)2023-2024學(xué)年六年級(jí)下學(xué)期期末考試英語(yǔ)試題
- TYNZYC 0095-2022 綠色藥材 金果欖(青牛膽)栽培技術(shù)規(guī)程
- 2024年廣西壯族自治區(qū)中考?xì)v史真題(含解析 )
- 幼兒園戶外混齡建構(gòu)游戲案例分析
- 電線老化檢測(cè)委托
- 創(chuàng)業(yè)修煉智慧樹(shù)知到期末考試答案章節(jié)答案2024年同濟(jì)大學(xué)
- JGJ52-2006 普通混凝土用砂、石質(zhì)量及檢驗(yàn)方法標(biāo)準(zhǔn)
- FFU龍骨吊頂防墜研究及應(yīng)用-2023.12.11王國(guó)棟修
- 河南省洛陽(yáng)市2023-2024學(xué)年高一下學(xué)期期末考試物理試卷
評(píng)論
0/150
提交評(píng)論