2020年黑龍江省大慶一中中考數(shù)學(xué)模擬試卷_第1頁
2020年黑龍江省大慶一中中考數(shù)學(xué)模擬試卷_第2頁
2020年黑龍江省大慶一中中考數(shù)學(xué)模擬試卷_第3頁
2020年黑龍江省大慶一中中考數(shù)學(xué)模擬試卷_第4頁
2020年黑龍江省大慶一中中考數(shù)學(xué)模擬試卷_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、中考數(shù)學(xué)模擬試卷2.3.下列計算正確的是(A. 2a?3b=5abC. (-3a2b) 2=6a4b2若式子熱T有意義,則實數(shù)B. a3?a4=a12D.m的取值范圍是a5 田 3+a2=2a題號一一三四總分得分一、選擇題(本大題共 10小題,共30.0分)1.下列圖形中既是軸對稱圖形又是中心對稱圖形的是()第7頁,共20頁A. m> 2B.m>2 且 mwiC. m>2D. m>2 且 ml4 . 拋物線y=3x2+2x-1向上平移4個單位長度后的函數(shù)解析式為()A. y=3x2+2x-5B. y=3x2+2x-4C. y=3x2+2x+3D. y=3x2+2x+45

2、 .如圖,將一塊含有 30。角的直角三角板的兩個頂點放在矩形直尺的一組對邊上.如A. 60°B. 50C. 40。D. 307.6. 在同一直角坐標系中,函數(shù) ¥ = ?與丫=2*+1 (awo)的圖象可能是()如圖,AABD的三個頂點在 OO上,AB是直徑,點C在。上, 且 ZABD=52°,貝U /BCD 等于()A. 32B. 38C. 528.D. 662, 2 ¥4 jt' 1已知不等式 1-<,其解集在數(shù)軸上表示正確的是()A. . . q . >-2 -1 0 1 2 3 4 5 6 7 8B. 人1c-2 -1 0 1

3、 2 3 4 5 6 7 8C. -2 -1 012345678D. Ill A Xi I >-2 -1 0123456789. 如圖,在 GABC 中,ZACB=90 °, AC=BC=2,將 GABC 繞 AC的中點D逆時針旋轉(zhuǎn)90°得到那B' C',其中點B的運動路徑為,則圖中陰影部分的面積為()53A.彳啊B. 210.如圖,在 AABC 中,AB=BC, ZABC=90 °, BM 是 AC 邊中線,點D,E分另1J在邊 AC和BC上,DB=DE,EFBC 于點F,以下結(jié)論:(1) /DBM=/CDE;(2) Sabde< S

4、四邊形BMFE ;(3) CD?EN=BN?BD;(4) AC=2DF.其中正確結(jié)論的個數(shù)是()A. 1B. 2二、填空題(本大題共 8小題,共C. 3D. 424.0 分)11 .用科學(xué)記數(shù)法表示:0.00000682=.12 . 一組數(shù)據(jù)1, 4, 6, x的中位數(shù)和平均數(shù)相等,則 x的值是13 .某商品每件標價為150元,若按標價打8折后,再降價10元銷售,仍獲利10%, 則該商品每件的進價為 元.14 .已知關(guān)于x的方程x2+2kx+k-1=0,只有一個根在 0, 1之間(不含0, 1),則k的取值范圍是.15 .如圖,圓錐側(cè)面展開得到扇形,此扇形半 徑CA=6,圓心角ZACB=120

5、°,則此圓錐 高OC的長度是.16 .如圖,一等腰三角形,底邊長是18厘米,底邊上的高是 18厘米,現(xiàn)在沿底邊依次從下往上畫寬度均為3厘米的矩形,畫出的矩形是正方形時停止,則這個矩形是第 個.17 .已知拋物線y=-x2+mx+2-m,在自變量x的值滿足-1蟲w2的情況下,若對應(yīng)的函數(shù) 值y的最大值為6,則m的值為.18 .已知x, y為正實數(shù),且y+3x=3,則m + J十/的最小值為 .三、計算題(本大題共1小題,共4.0分).1 r,、/,一19 .已知工+工=三,求f + f+ i的值四、解答題(本大題共 9小題,共62.0分)20 .計算:(2) 之一何十久超球亞cos45

6、。.,八4JT /_4k + 4 21 .先化簡:(X-) -,并將x從0, 1, 2中選一個你喜歡的數(shù)代入求值.22 .如圖1, 2分別是某款籃球架的實物圖與示意圖,已知底座 BC的長為0.60米,底座BC與支架AC所成的角/ACB=75°,點A、H、F在同一條直線上,支架 AH段的長為1米,HF段的長為1.50米,籃板底部支架 HE的長為0.75米.(1)求籃板底部支架 HE與支架AF所成的角/FHE的度數(shù).(2)求籃板頂端F到地面的距離.(結(jié)果精確到0.1米;參考數(shù)據(jù):cos75° =0.2588 sin75 ° 0.965tan75 ° 3.7謔

7、= 1.732 代=1.41423 .為了解某校九年級男生 1000米跑的水平,從中隨機抽取部分男生進行測試,并把 測試成績分為D、C、B、A四個等次繪制成如圖所示的不完整的統(tǒng)計圖,請你依圖 解答下列問題:(1) a =, b =, c=(2)扇形統(tǒng)計圖中表示C等次的扇形所對的圓心角的度數(shù)為(3)學(xué)校決定從 A等次的甲、乙、丙、丁四名男生中,隨機選取兩名男生參加全 市中學(xué)生1000米跑比賽,請用列表法或畫樹狀圖法,求甲、乙兩名男生同時被選 中的概率.24 .已知 BD 垂直平分 AC, /BCD = ZADF, AF 1AC ,(1)證明四邊形 ABDF是平行四邊形;(2)若 AF=DF=5,

8、 AD=6,求 AC 的長.25 .某商場計劃購進 A, B兩種新型節(jié)能臺燈共 100盞,已知一盞 A型臺燈進價為30 元,售價為45元,一盞B型臺燈進價為50元,售價為70元,則:(1)若商場預(yù)計進貨款為 3500元,問:這兩種臺燈各購進了多少盞?(2)若商場規(guī)定B型臺燈進貨數(shù)量不超過 A型臺次T的3倍,應(yīng)怎樣進貨才能使商 場在銷售完了這批臺燈時獲利最多?此時利潤為多少元?26 .如圖,已知矩形 OABC中,OA=3, AB =4,雙曲線y=: (k>0)與矩形兩邊 AB、BC分別交于 D、E,且BD=2AD(1)求k的值和點E的坐標;(2)點P是線段OC上的一個動點,是否存在點 P,

9、使PE=90。?若存在,求出此時點 P的坐標,若不存在, 請說明理由.27 .如圖,四邊形 ABCD的頂點在OO±, BD是。的直徑,延長 CD、BA交于點E, 連接AC、BD交于點F,作AH±CE,垂足為點 H,已知ZADE = ZACB.(1)求證:AH是。的切線;(2)若 OB=4, AC=6,求 sin/ACB 的值;(3)若需彳,求證:CD = DH.28 .如圖1,在平面直角坐標系中,已知拋物線y=-x2個后x4交x軸A, B兩點,交y軸于點C,拋物線上一點 D的橫坐標為-5.(1)求直線BD的解析式;(2)點E是線段BD上的動點,過點E作x軸的垂線分別交拋物線

10、于點 F ,交x 軸于點G.當(dāng)折線段EF+BE最大時,在直線EF上任取點P,連接BP,以BP為斜 邊向上作等腰直角 ABPQ,連接CQ、QG,求CQ+QG的最小值.(3)如圖2,連接BC,把OBC沿x軸翻折,翻折后的 OBC記為BC',現(xiàn) 將OBC'沿著x軸平移,平移后的OBC'記為 © B' C,連接DO'、C' B, 記C B與x軸形成較小的夾角度數(shù)為 %當(dāng)/O' DB=”時,直接寫出此時 C的 坐標.第 7 頁,共 20 頁答案和解析1.【答案】A【解析】【分析】本題考查了中心對稱及軸對稱的知識,解題時掌握好中心對稱圖形與

11、軸對稱圖形的概 念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋 找對稱中心,旋轉(zhuǎn)180度后兩部分重合.根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【解答】解:A.既是軸對稱圖形,又是中心對稱圖形,故 A正確;B.不是軸對稱圖形,是中心對稱圖形,故 B錯誤;C.是軸對稱圖形,不是中心對稱圖形,故 C錯誤;D.是軸對稱圖形,不是中心對稱圖形,故 D錯誤.故選A.2 .【答案】D【解析】 解:A、單項式乘單項式系數(shù)乘系數(shù),同底數(shù)的哥相乘,故 A錯誤;B、同底數(shù)哥的乘法底數(shù)不變指數(shù)相加,故 B錯誤;C、積的乘方等于乘方的積,故 C錯誤;D、同底數(shù)哥的除法底數(shù)不變指數(shù)相減,故

12、D正確;故選:D.根據(jù)單項式的乘法,可判斷 A;根據(jù)同底數(shù)塞的乘法,可判斷 B;根據(jù)積的乘方,可判 斷C;根據(jù)同底數(shù)塞的除法,可判斷D.本題考查了同底數(shù)哥的除法,熟記法則并根據(jù)法則計算是解題關(guān)鍵.3 .【答案】D【解析】【分析】本題考查二次根式有意義的條件和分式有意義的條件,解題的關(guān)鍵是熟練運用二次根式有意義的條件和分式有意義的條件, 本題屬于基礎(chǔ)題型.根據(jù)分式有意義的條件和二次 根式有意義的條件即可求出答案.【解答】rm + 2 > 0解:由題意可知:;1 - J .m及2且m w 1 故選D.4 .【答案】C【解析】【分析】利用平移規(guī)律“上加下減”,即可確定出平移后解析式.此題考查了

13、二次函數(shù)的圖象與幾何變換,熟練掌握平移規(guī)律是解本題的關(guān)鍵. 【解答】解:拋物線y=3x2+2x-1向上平移4個單位長度的函數(shù)解析式為 y=3x2+2x-1+4=3x2+2x+3, 故選:C.5 .【答案】D;0【解析】解:如圖,=71+30 :.AB /CD,.z2=Z3=60 :./ = /3-30 =60 -30 =30°.故選:D.根據(jù)三角形外角性質(zhì)可得73=30° +/1,由于平行線的性質(zhì)即可得到72= 73=60° ,即可解答.本題考查了平行線的性質(zhì),關(guān)鍵是根據(jù):兩直線平行,內(nèi)錯角相等.也利用了三角形外角性質(zhì).6 .【答案】B【解析】 解:A、由函數(shù)y

14、= -f的圖象可知a>0,由y=ax+1 (aw。的圖象可知a< 0故 選項A錯誤.B、由函數(shù)¥ = 的圖象可知a>0,由y=ax+1 (aw。的圖象可知a>0,且交于y軸于 正半軸,故選項 A正確.C、y=ax+1 (awQ的圖象應(yīng)該交于 y軸于正半軸,故選項 C錯誤.D、由函數(shù)y = - f的圖象可知a< 0,由y=ax+1 (aw。的圖象可知a>0,故選項D錯誤. 故選:B.本題可先由反比例函數(shù) y=-圖象得到字母a的正負,再與一次函數(shù) y=ax+1的圖象相比 較看是否一致即可解決問題.本題考查反比例函數(shù)的圖象、一次函數(shù)的圖象等知識, 解題的

15、關(guān)鍵是靈活應(yīng)用這些知識解決問題,屬于中考??碱}型.7 .【答案】B【解析】 解:.AB是。的直徑,.MDB=90°,.zABD=52°,.zA=90°-/ABD=38°.zBCD=ZA=38°.故選:B.由AB是。的直徑,根據(jù)直徑所對的圓周角是直角,即可求得/ADB的度數(shù),繼而求得的度數(shù),又由圓周角定理,即可求得答案.此題考查了圓周角定理以及直角三角形的性質(zhì).此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.8 .【答案】A2-x 2.14 /一工 ggf,口(【解析】解:根據(jù)題意得:2.-4 .1|<T由得:x>2,由得:xv 5,2x&

16、lt; 5,表示在數(shù)軸上,如圖所示,II.一 二 Q、-2 -1 012345678故選:A.把已知雙向不等式變形為不等式組,求出各不等式的解集,找出解集的公共部分即可.此題考查了解一元一次不等式組,以及在數(shù)軸上表示不等式的解集,熟練掌握運算法則是解本題的關(guān)鍵.9 .【答案】A此時點A'在斜邊AB上,CA' AAB,【解析】解:評BC繞AC的中點D逆時針旋轉(zhuǎn)90°得到A'B' C',A' B'=出 + 2±=2/,90 - u M 5( 平 53,S陰二一病一-1浸登-(2:2-、:2) 書妥=畛 故選:A.先利用勾股

17、定理求出 DB' , A' B',再根據(jù)$陰=$扇形BDB,-S/DBC-S ADB,C,計算即可. 本題考查旋轉(zhuǎn)變換、弧長公式等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于 中考??碱}型.10 .【答案】C【解析】 解:(1)設(shè)/EDC=x,則/DEF=90°-x . zDBE= ZDEB = ZEDC+ZC=x+45 ;. BD=DE,zDBM = ZDBE-ZMBE=45 +x-45 =x.zDBM = ZCDE,故(1)正確;(2)在 RtABDM 和 RtADEF 中,QBM = CDEI BD 二口E,. RtABDM RtADEF .SZWM

18、=SZDEF .-'S/bdm-Szdmn =Sadef-Sadmn ,即 Szbn=S 四邊形 mnef .SzlDBN+S/BNE = S四邊形 MNEF + SzBNE,SzlBDE=S四邊形BMFE ,故(2)錯誤;(3) . zBNE=ZDBM+ZBDN, ZBDM =ZBDE +ZEDF , /EDF = /DBM, .-.zBNE= ZBDM .又1. zC=ZNBE=45°ZDBCsNEB.CD BN . 白口一 EN '. CD?EN=BN?BD;故(3)正確;(4) .RtABDMRtADEF , .BM=DF,. zB=90 °, M

19、是 AC 的中點, 1. BM=MC._ i ,、 一口. DF=C,故(4)正確.故選:C.(1)設(shè)/EDC=x,貝U/DEF =90°-x從而可得至U /DBE= ZDEB =180 - (90°-x) -45 =45° +x, /DBM=/DBE-JMBE=45°+x-45 =x,從而可得至U /DBM = /CDE;(2)可證明ABDM0DEF,然后可證明: 4DNB的面積二四邊形NMFE的面積,所以 DNB的面積+ABNE的面積=四邊形 NMFE的面積+ABNE的面積;(3)可證明 ADBCsEB;(4)由BDMREF ,可知DF=BM,由直角

20、三角形斜邊上的中線的性質(zhì)可知BMAC.本題主要考查的是全等三角形、相似三角形性質(zhì)和判定,等腰直角三角形的性質(zhì),利用 面積法證明SzBDE=S四邊形BMFE是解答本題的關(guān)鍵.11 .【答案】6.82 10-6【解析】 解:0.00000682=6.82 M0-6,故答案為:6.82 X10-6.絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為aX10-n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負指數(shù)哥,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.本題考查用科學(xué)記數(shù)法表示較小的數(shù),一般形式為aX10-n,其中1 wa|< 10, n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0

21、的個數(shù)所決定.12 .【答案】-1或3或9一 一 ,一1+ 4 + 6 + 1 1+4 , 1. + 4 + 6 4- i Jt + 4 ,1 + 4 + 6 + 1 4+6 【解析】 解:根據(jù)題意得, 一一-或一工一二避-或一*一=,解得x=-1或3或9.故答案為-1或3或9.l + 4 + 6 + x 1 + 41+ 4 + 6 + 1 x + 4根據(jù)中位數(shù)的定義和平均數(shù)的定義得到一S一二丁或一S一F或1 + 4 + 6 + x 4 + 6一=,然后解方程即可.本題考查了中位數(shù)與平均數(shù),將一組數(shù)據(jù)按照從小到大(或從大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù), 則處于中間位置的數(shù)就是這組數(shù)據(jù)的

22、中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù).它是反映數(shù)據(jù)集中趨勢的一項指標.13 .【答案】100【解析】 解:設(shè)該商品每件的進價為 x元,則150 刈0%-10HxX10%, 解得x =100.即該商品每件的進價為100元.故答案是:100.根據(jù)題意可知商店按零售價的8折再降價10元銷售即銷售價=150X80%-10,得出等量關(guān)系為150X80%-10-x=xX10%,求出即可.此題主要考查了一元一次方程的應(yīng)用,解決本題的關(guān)鍵是得到商品售價的等量關(guān)系.14 .【答案】0<k<1【解析】 解:對于

23、y=x2+2kx+k-1,. 受4k2-4 (k-1) = (2k-1) 2+3>0,.,拋物線與x軸有兩個交點,而拋物線開口向上,當(dāng) x=0 時,y=k-1 >0, x=1 時,y=1+2 k+k-1 < 0,不存在;當(dāng) x=0 時,y=k-1<0, x=1 時,y=1+2 k+k-1 > 0,所以0vkv 1時,拋物線y=x2+2kx+k-1與x軸的只有一個交點在(0, 0)與(1, 0)之 間(不含段點),故答案為0vkv 1.利用二次函數(shù)的性質(zhì)解決問題:對于 y=x2+2kx+k-1,利用= (2k-1) 2+3>0可判斷拋物 線與x軸有兩個交點,滿

24、足當(dāng) x=0時,y=k-1v0; x=1時,y=1+2k+k-1 >0,從而得到k 的范圍.本題考查了根的判別式:一元二次方程ax2+bx+c=0 (awQ)的根與 匕b2-4ac有如下關(guān)系:當(dāng)4> 0時,方程有兩個不相等的兩個實數(shù)根;當(dāng)上0時,方程有兩個相等的兩個實數(shù)根;當(dāng)< 0時,方程無實數(shù)根.15 .【答案】4點【解析】【分析】此題主要考查了扇形的弧長公式,勾股定理,求出OA是解本題的關(guān)鍵.先根據(jù)圓錐的側(cè)面展開圖,扇形的弧長等于該圓錐的底面圓的周長,求出 OA,最后用勾股定理即可 得出結(jié)論.【解答】解:設(shè)圓錐底面圓的半徑為r,.AC=6, /ACB=120 : Jr 1

25、20JTX6-'-jb= iso =2 7f,. r=2,即:OA=2,在Rt9OC中,OA=2, AC=6,根據(jù)勾股定理得,OC=«C*T)/=4,故答案為:4&.16 .【答案】5【解析】解:已知畫出的紙條中有一張是正方形,則正方形中平行于底邊的邊是 3, 所以根據(jù)相似三角形的性質(zhì)可設(shè)從頂點到這個正方形的線段為x,則嘉二2,解得x=3, 所以另一段長為18-3=15,因為15y=5,所以是第5張.故答案為:5.根據(jù)相似三角形的相似比求得頂點到這個正方形的長,再根據(jù)矩形的寬求得是第幾張.本題主要考查了相似三角形的判定和性質(zhì),關(guān)鍵是根據(jù)相似三角形的性質(zhì)及等腰三角形的性

26、質(zhì)的綜合運用解答.17 .【答案】I或8【解析】【分析】本題考查了二次函數(shù)的最值:確定一個二次函數(shù)的最值,首先看自變量的取值范圍,當(dāng) 自變量取全體實數(shù)時,其最值為拋物線頂點坐標的縱坐標;當(dāng)自變量取某個范圍時,要分別求出頂點和函數(shù)端點處的函數(shù)值,比較這些函數(shù)值,從而獲得最值先求出拋物線的對稱軸方程為x=討論:若<-1,利用二次函數(shù)的性質(zhì),當(dāng) -1蟲W2時,y隨x的增大而減小,即x=-1時,y=6,所以-(-1) 2-m+2-m=6;若-1§W2,根據(jù)二次函數(shù)的性質(zhì),當(dāng)-1a"所以x=;時,y=6,所以-(y) 2+2-m=6;當(dāng)三>2,根據(jù) 二次函數(shù)的性質(zhì),-1a

27、" y隨x的增大而增大,即x=2時,y=6,所以-22+2m+2-m=6, 然后分別解關(guān)于 m的方程確定滿足條件的 m的值.【解答】解:拋物線的對稱軸為直線x=-2xn=y,當(dāng)v-1,即mv-2時,則-1蟲W2, y隨x的增大而減小,即 x=-1時,y=6 ,所以-(-1)2-m+2-m=6,解得 m=w;當(dāng)-14wz即-2<mw4時,則-1版wz所以x=時,y=6,所以-)2< +2-m=6,解得m1=2+2?。ㄉ崛ィ?,m2=2-2番(舍去);當(dāng)慨>2,即m>4時,則-1版wz y隨x的增大而增大,即x=2時,y=6,所以-22+2m+2-m=6,解得m=8

28、,綜上所述,m的值為1或8.故答案為之或8.18 .【答案】I【解析】 解:如圖,作點 。關(guān)于直線y=-3x+3的對稱點C,連接AC,作CDU軸AB=x, AO=> + y工貝U x+,: ' _ J=AB+AO=AB+ACx+口十產(chǎn)的最小值即為 CD的長點C坐標為(亨,彳)故答案為畫出y=3-3x直線,將 口+ 了轉(zhuǎn)化為斜邊長,則 x+?十了可以看作是兩條線段之和, 通過對稱求出極值.本題考查了轉(zhuǎn)化的思想和極值類型問題,將代數(shù)式轉(zhuǎn)化為函數(shù)圖象是本題的一個難點.19 .【答案】 解:將M + :二三兩邊同時乘以X,彳導(dǎo)x2+1=3x,/ ? 3 1=/+/ + 19J S【解析】

29、我們可將前面式子變式為x2+1=3x,再將后面式子的分母變式為 / 的形式從而求出值.本題考查的是分式的值,解題關(guān)鍵是用到了整體代入的思想.20 .【答案】解:原式=4-3+1-他若=2-1=1 .【解析】先分別根據(jù)負整數(shù)指數(shù)哥及 0指數(shù)哥的計算法則、數(shù)的開方法則、特殊角的三 角函數(shù)值計算出各數(shù),再根據(jù)實數(shù)混合運算的法則進行計算即可.本題考查的是實數(shù)的運算,熟知負整數(shù)指數(shù)哥及0指數(shù)哥的計算法則、數(shù)的開方法則、特殊角的三角函數(shù)值是解答此題的關(guān)鍵.21 .【答案】解:原式=(-1)當(dāng)x=0時,原式=-1【解析】先根據(jù)分式的混合運算順序和運算法則化簡原式, 再選取使分式有意義的 x的值代入計算可得.

30、本題主要考查分式的化簡求值,解題的關(guān)鍵是掌握分式的混合運算順序和運算法則.HE 122 .【答案】 解:(1)由題意可得:cos/FHE=詼書,貝U /FHE=60° ;(2)延長FE交CB的延長線于 M ,過A作AG ±FM于G ,在 RtAABC 中,tan ZACB =, . AB=BC?tan75 巾.60 3.732=2.2392 ,. GM=AB=2.2392,在 RtAAGF 中, zFAG = ZFHE =60° , sin /FAG =,FG J5 . sin60 = =y, . FG = 2.17(m),. FM=FG + GM= 4.4(米)

31、,答:籃板頂端F到地面的距離是4.4米.【解析】本題考查解直角三角形、銳角三角函數(shù)、解題的關(guān)鍵是添加輔助線,構(gòu)造直角 三角形,記住銳角三角函數(shù)的定義,屬于中考??碱}型.(1)直接利用銳角三角函數(shù)關(guān)系得出cos/FHE=W,進而得出答案;(2)延長FE交CB的延長線于 M ,過A作AG1FM于G,解直角三角形即可得到結(jié)論.23 .【答案】(1) 2、45、20;(2) 72;(3)畫樹狀圖,如圖所示:開蛤Z丙丁甲丙丁甲乙丁甲乙丙共有12個可能的結(jié)果,選中的兩名同學(xué)恰好是甲、乙的結(jié)果有2個,故P (選中的兩名同學(xué)恰好是甲、乙)【解析】解:(1)本次調(diào)查的總?cè)藬?shù)為 12與0%=40人, isfl.

32、a=40 >5%=2, b=X100=45, c=X100=20,故答案為:2、45、20;(2)扇形統(tǒng)計圖中表示 C等次的扇形所對的圓心角的度數(shù)為360° X20%=72 ,故答案為:72;(3)見答案.【分析】(1)根據(jù)A等次人數(shù)及其百分比求得總?cè)藬?shù),總?cè)藬?shù)乘以D等次百分比可得a的值,再用B、C等次人數(shù)除以總?cè)藬?shù)可得 b、c的值;(2)用360。乘以C等次百分比可得;(3)畫出樹狀圖,由概率公式即可得出答案.此題主要考查了列表法與樹狀圖法,以及扇形統(tǒng)計圖、條形統(tǒng)計圖的應(yīng)用,要熟練掌握.24 .【答案】(1)證明:=BD垂直平分AC,.AB=BC, AD=DC, 在AADB與

33、CDB中,fAB = BC 月C.二 口日.,.ZADBCDB (SSS) .zBCD=ZBAD , . zBCD=ZADF , .zBAD=/ADF , . AB /FD, . BD1AC, AFSC, . AF /BD,四邊形ABDF是平行四邊形,(2)解:.四邊形ABDF是平行四邊形,AF=DF=5, . ?ABDF是菱形,,AB=BD=5,.AD=6,設(shè) BE=x,貝U DE =5-x, .ab2-be2=ad2-de2,即 52-x2=62- (5-x) 2解得:x=g,4S. AC=2AE=可.【解析】(1)先證得 那DB03DB求得/BCD=/BAD,從而得至U 4DF = /B

34、AD,所以AB/FD,因為 BDXAC, AFLAC,所以 AF/BD,即可證得.(2)先證得平行四邊形是菱形,然后根據(jù)勾股定理即可求得.本題考查了平行四邊形的判定,菱形的判定和性質(zhì)以及勾股定理的應(yīng)用.25 .【答案】 解:(1)設(shè)商場應(yīng)購進 A型臺燈x盞,則B型臺燈為y盞,根據(jù)題意得,x + y = 10(1 30x +50y = 3500 ,“75 y = 25,答:應(yīng)購進 A型臺燈75盞,B型臺燈25盞;(2)設(shè)商場銷售完這批臺燈可獲利y元,則 y= (45-30) x+ (70-50) ( 100-x), =15x+2000-20x,=-5x+2000,即 y=-5x+2000,B型臺

35、燈的進貨數(shù)量不超過A型臺燈數(shù)量的3倍,.100-x WN,.x> 25.k=-5<0, y隨x的增大而減小,x=25時,y取得最大值,為-5 25+2000=1875 (元)答:商場購進 A型臺燈25盞,B型臺燈75盞,銷售完這批臺燈時獲利最多,此時利潤為1875元.【解析】(1)設(shè)商場應(yīng)購進 A型臺燈x盞,表示出B型臺燈為y盞,然后根據(jù)“ A, B 兩種新型節(jié)能臺燈共 100盞”、“進貨款二人型臺燈的進貨款+B型臺燈的進貨款”列出 方程組求解即可;(2)設(shè)商場銷售完這批臺燈可獲利 y元,根據(jù)獲利等于兩種臺燈的獲利總和列式整理, 再求出x的取值范圍,然后根據(jù)一次函數(shù)的增減性求出獲利

36、的最大值本題考查了一元一次方程的應(yīng)用、二元一次方程組的應(yīng)用以及一次函數(shù)的應(yīng)用,主要利用了一次函數(shù)的增減性,(2)題中理清題目數(shù)量關(guān)系并列式求出x的取值范圍是解題的關(guān)鍵.26.【答案】 解:(1).AB=4, BD=2AD, . AB=AD+BD=AD+2AD=3AD=4,. AD=;,又 QA=3,- D d 3),點D在雙曲線y=:上,4. k=7 X3=4 ;.四邊形OABC為矩形,.AB=OC=4,.點E的橫坐標為4.4把x=4代入y=;中,得y=1,.E (4, 1);(2)假設(shè)存在要求的點 P坐標為(m, 0) , OP=m, CP=4-m. zAPE=90 °,zAPO+

37、 /EPC=90°,又1 zAPO+ZOAP=90° ,,zEPC=/OAP,又 jAOP=ZPCE=90° ,.3OPs 在CE,OA OF近=在,3 m-=.41,解得:m=1或m=3 ,存在要求的點P,坐標為(1, 0)或(3, 0).【解析】(1)由矩形 OABC中,AB=4, BD=2AD,可得3AD=4,即可求得 AD的長,然后求得點D的坐標,即可求得 k的值,繼而求得點 E的坐標;(2)首先假設(shè)存在要求的點 P坐標為(m, 0) , OP = m, CP=4-m,由ZAPE=90° ,易 證得9OPsCE,然后由相似三角形的對應(yīng)邊成比例,求

38、得 m的值,繼而求得此時點P的坐標.此題屬于反比例函數(shù)綜合題,考查了待定系數(shù)求反比例函數(shù)解析式、矩形的性質(zhì)以及相D的坐標與證得 AAOPs在CE是解此題的關(guān)鍵.似三角形的判定與性質(zhì).注意求得點27.【答案】(1)證明:連接 OA, 由圓周角定理得, "CB=/ADB,1 .zADE=ZACB,2 .zADE=/ADB, ,.BD是直徑, .zDAB=ZDAE=90°, 在ADAB和ADAE中,= EADABDA=EDA.-.ZDABDAE,. AB=AE,又.OB = OD,. OA/DE,又.AH IDE,. OA 1AH ,. AH是。的切線;(2)解:由(1)知,/E=/DBE, ZDBE = ZACD,.zE=ZACD,.AE=AC=AB=6.在 Rt9BD 中,AB=6, BD=8, /ADE=/ACB,6 33. sin/ADB=E=a,即 sin/ACB=;(3)證明:由(2)知,OA是BDE的中位線, i. OA /DE, OA=DE .3 .ZCDFMOF,CD DF 2211. CD=1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論