圓錐曲線6 拋物線 (中檔3 多選)-2022年全國(guó)一卷新高考數(shù)學(xué)題型細(xì)分匯編(含答案)_第1頁(yè)
圓錐曲線6 拋物線 (中檔3 多選)-2022年全國(guó)一卷新高考數(shù)學(xué)題型細(xì)分匯編(含答案)_第2頁(yè)
圓錐曲線6 拋物線 (中檔3 多選)-2022年全國(guó)一卷新高考數(shù)學(xué)題型細(xì)分匯編(含答案)_第3頁(yè)
圓錐曲線6 拋物線 (中檔3 多選)-2022年全國(guó)一卷新高考數(shù)學(xué)題型細(xì)分匯編(含答案)_第4頁(yè)
圓錐曲線6 拋物線 (中檔3 多選)-2022年全國(guó)一卷新高考數(shù)學(xué)題型細(xì)分匯編(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2022年全國(guó)一卷新高考題型細(xì)分S1-3圓錐曲線6 小題 拋物線(中檔)試卷主要是2022年全國(guó)一卷新高考地區(qū)真題、模擬題,合計(jì)174套。題目設(shè)置有尾注答案,復(fù)制題干的時(shí)候,答案也會(huì)被復(fù)制過(guò)去,顯示在文檔的后面,雙擊尾注編號(hào)可以查看。方便老師備課選題。比較單一的題型按知識(shí)點(diǎn)、方法分類排版;綜合題按難度分類排版,后面標(biāo)注有該題目類型。圓錐曲線拋物線中檔3:(多選3,2022年廣東深圳一模J23)已知定圓A的半徑為1,圓心A到定直線l的距離為d,動(dòng)圓C與圓A和直線l都相切,圓心C的軌跡為如圖所示的兩條拋物線,記這兩拋物線的焦點(diǎn)到對(duì)應(yīng)準(zhǔn)線的距離分別為,則( 【答案】ABD【解析】【分析】根據(jù)動(dòng)圓C與

2、圓A和直線l都相切,分圓C與圓A相外切和圓C與圓A相內(nèi)切,分別取到A 【答案】ABD【解析】【分析】根據(jù)動(dòng)圓C與圓A和直線l都相切,分圓C與圓A相外切和圓C與圓A相內(nèi)切,分別取到A的距離為d+1,d-1,且平行于l的直線,利用拋物線的定義求解.【詳解】解:動(dòng)圓C與圓A和直線l都相切,當(dāng)圓C與圓A相外切時(shí),取到A的距離為d+1,且平行于l的直線,則圓心C到A的距離等于圓心C到的距離,由拋物線的定義得:圓心C的軌跡是以A為焦點(diǎn),以為準(zhǔn)線的拋物線;當(dāng)圓C與圓A相內(nèi)切時(shí),取到A的距離為d-1,且平行于l的直線,則圓心C到A的距離等于圓心C到的距離,由拋物線的定義得:圓心C的軌跡是以A為焦點(diǎn),以為準(zhǔn)線的

3、拋物線;所以,當(dāng)時(shí),拋物線不完整,所以,故選:ABD(多選3,2022年新高考全國(guó)一卷J01)已知O為坐標(biāo)原點(diǎn),點(diǎn)在拋物線上,過(guò)點(diǎn)的直線交C于P,Q兩點(diǎn),則( 【答案】BCD【解析】【分析】求出拋物線方程可判斷A,聯(lián)立AB與拋物線的方程求交點(diǎn)可判斷B,利用距離公式及弦長(zhǎng)公式可判斷C、D.【詳解】將點(diǎn)的代入拋物線方程得,所以拋物線方程為,故準(zhǔn)線方程為,A錯(cuò)誤;,所以直線的方程為,聯(lián)立,可得 【答案】BCD【解析】【分析】求出拋物線方程可判斷A,聯(lián)立AB與拋物線的方程求交點(diǎn)可判斷B,利用距離公式及弦長(zhǎng)公式可判斷C、D.【詳解】將點(diǎn)的代入拋物線方程得,所以拋物線方程為,故準(zhǔn)線方程為,A錯(cuò)誤;,所以直

4、線的方程為,聯(lián)立,可得,解得,故B正確;設(shè)過(guò)的直線為,若直線與軸重合,則直線與拋物線只有一個(gè)交點(diǎn),所以,直線的斜率存在,設(shè)其方程為,聯(lián)立,得,所以,所以或,又,所以,故C正確;因?yàn)椋?,而,故D正確.故選:BCD(多選,2022年新高考全國(guó)二卷J02)已知O為坐標(biāo)原點(diǎn),過(guò)拋物線焦點(diǎn)F的直線與C交于A,B兩點(diǎn),其中A在第一象限,點(diǎn),若,則( 【答案】ACD【解析】【分析】由及拋物線方程求得,再由斜率公式即可判斷A選項(xiàng);表示出直線的方程,聯(lián)立拋物線求得,即可求出判斷B選項(xiàng);由拋物線的定義求出即可判斷C選項(xiàng);由,求得,為鈍角即可判斷D選項(xiàng) 【答案】ACD【解析】【分析】由及拋物線方程求得,再由斜率

5、公式即可判斷A選項(xiàng);表示出直線的方程,聯(lián)立拋物線求得,即可求出判斷B選項(xiàng);由拋物線的定義求出即可判斷C選項(xiàng);由,求得,為鈍角即可判斷D選項(xiàng).【詳解】對(duì)于A,易得,由可得點(diǎn)在的垂直平分線上,則點(diǎn)橫坐標(biāo)為,代入拋物線可得,則,則直線的斜率為,A正確;對(duì)于B,由斜率為可得直線的方程為,聯(lián)立拋物線方程得,設(shè),則,則,代入拋物線得,解得,則,則,B錯(cuò)誤;對(duì)于C,由拋物線定義知:,C正確;對(duì)于D,則為鈍角,又,則為鈍角,又,則,D正確.故選:ACD.(多選4,2022年廣東肇慶J36)已知F是拋物線的焦點(diǎn),過(guò)點(diǎn)F作兩條互相垂直的直線,與C相交于A,B兩點(diǎn),與C相交于E,D兩點(diǎn),M為A,B中點(diǎn),N為E,D中

6、點(diǎn),直線l為拋物線C的準(zhǔn)線,則( 【答案】BCD; )A. 點(diǎn)M到直線l的距離為定值 B. 以為直徑的圓與l相切C. 的最小值為32 D. 當(dāng)最小時(shí),(拋物線,中檔;) 【答案】BCD;(多選3,2022年廣東華附、省實(shí)、廣雅、深中四校聯(lián)考J35)已知拋物線C:y2=4x,圓F:x12+y2=14(F為圓心),點(diǎn)P在拋物線C上,點(diǎn)Q在圓F上,點(diǎn)A(-1,0),則下列結(jié)論中正確的是( 答案:ABC; )A. PQ的最小值是12 B. PFPA的最小值是22C 答案:ABC;(多選3,2022年福建福州J05)已知拋物線的準(zhǔn)線為,點(diǎn)在拋物線上,以為圓心的圓與相切于點(diǎn),點(diǎn)與拋物線的焦點(diǎn)不重合,且,則

7、( 【答案】AC【解析】【分析】由拋物線的定義,得,又,易得是等邊三角形,結(jié)合圖像得到,即可求解;求得的坐標(biāo),則判斷出A和B選項(xiàng);對(duì)于C選項(xiàng),設(shè),利用兩點(diǎn)間的距離公式得到,結(jié)合二次函數(shù)的圖象性質(zhì),得到的最小值;設(shè)交于點(diǎn),通過(guò)拋物線的定義結(jié)合三點(diǎn)共線得,當(dāng)且僅當(dāng)、三點(diǎn)共線時(shí)取得最小值,即可判斷D選項(xiàng).【詳解】由拋物線的定義,得,準(zhǔn)線以為圓心的圓與相切于點(diǎn),所以,即軸,又,所以;因?yàn)?,所以是等邊三角形,即?【答案】AC【解析】【分析】由拋物線的定義,得,又,易得是等邊三角形,結(jié)合圖像得到,即可求解;求得的坐標(biāo),則判斷出A和B選項(xiàng);對(duì)于C選項(xiàng),設(shè),利用兩點(diǎn)間的距離公式得到,結(jié)合二次函數(shù)的圖象性質(zhì),

8、得到的最小值;設(shè)交于點(diǎn),通過(guò)拋物線的定義結(jié)合三點(diǎn)共線得,當(dāng)且僅當(dāng)、三點(diǎn)共線時(shí)取得最小值,即可判斷D選項(xiàng).【詳解】由拋物線的定義,得,準(zhǔn)線以為圓心的圓與相切于點(diǎn),所以,即軸,又,所以;因?yàn)?,所以是等邊三角形,即;設(shè)點(diǎn)在第一象限,作的中點(diǎn),連接,則,即,解得:,則拋物線的方程為:,則=3,對(duì)于A選項(xiàng),有,故A選項(xiàng)正確;對(duì)于B選項(xiàng),所以,易得圓與直線不相切,故B選項(xiàng)錯(cuò)誤;對(duì)于C選項(xiàng),設(shè)拋物線上的點(diǎn),則化簡(jiǎn),得,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,故C選項(xiàng)正確;對(duì)于D選項(xiàng),設(shè)過(guò)點(diǎn)作準(zhǔn)線的垂線交于點(diǎn),由拋物線的定義,知,則,當(dāng)且僅當(dāng)、三點(diǎn)共線時(shí)取得最小值,所以,故D選項(xiàng)錯(cuò)誤;故選:AC.(多選4,2022年江蘇J67)

9、已知P為拋物線C:上的動(dòng)點(diǎn),在拋物線C上,過(guò)拋物線C的焦點(diǎn)F的直線l與拋物線C交于A,B兩點(diǎn),則( 【答案】ACD【解析】【分析】先求出拋物線的方程,利用拋物線的定義轉(zhuǎn)化即可求出最小值可判斷A;由直線與拋物線相交的弦長(zhǎng)公式及點(diǎn)到直線的距離公式即可判斷B;設(shè)直線l:,與拋物線的方程聯(lián)立,結(jié)合韋達(dá)定理及即可判斷C;將已知轉(zhuǎn)化為結(jié)合兩點(diǎn)連線的斜率公式即可得判斷D.【詳解】由在拋物線C上,得,拋物線C的方程為,對(duì)于A,過(guò)點(diǎn)P作拋物線的準(zhǔn)線的垂線PD,垂足為D,由拋物線的定義知, 即M,P,D三點(diǎn)共線時(shí), 【答案】ACD【解析】【分析】先求出拋物線的方程,利用拋物線的定義轉(zhuǎn)化即可求出最小值可判斷A;由直

10、線與拋物線相交的弦長(zhǎng)公式及點(diǎn)到直線的距離公式即可判斷B;設(shè)直線l:,與拋物線的方程聯(lián)立,結(jié)合韋達(dá)定理及即可判斷C;將已知轉(zhuǎn)化為結(jié)合兩點(diǎn)連線的斜率公式即可得判斷D.【詳解】由在拋物線C上,得,拋物線C的方程為,對(duì)于A,過(guò)點(diǎn)P作拋物線的準(zhǔn)線的垂線PD,垂足為D,由拋物線的定義知, 即M,P,D三點(diǎn)共線時(shí),取得最小值,為,故A正確對(duì)于B,因?yàn)闉锳B的中點(diǎn),所以,求得直線l的方程為,則點(diǎn)N到直線l的距離,則,故B錯(cuò)誤;對(duì)于C,易知直線l的斜率不為0,設(shè)直線l的方程為,代入,得,設(shè),則,同理可得,所以,解得,所以直線l的斜率為,故C正確對(duì)于D,易知點(diǎn)在拋物線上且軸設(shè),易知直線EG,EH的斜率存在,同理因

11、為EF平分,軸,所以,即,直線,所以,直線GH的斜率為定值,故D正確故選:ACD(多選4,2022年江蘇鹽城濱海中學(xué)J63)已知直線l過(guò)拋物線C:的焦點(diǎn)F,且直線l與拋物線交于A,B兩點(diǎn),過(guò)A,B分別作拋物線C的切線,兩切線交于點(diǎn)G,設(shè),則下列選項(xiàng)正確的是( 【答案】AC【解析】【分析】A選項(xiàng),直接聯(lián)立韋達(dá)定理求解;B選項(xiàng),計(jì)算出圓心到的距離和半徑進(jìn)行比較;C選項(xiàng),寫出A,B兩點(diǎn)處的切線方程,聯(lián)立求出點(diǎn)G坐標(biāo),通過(guò)向量檢驗(yàn)垂直關(guān)系;D選項(xiàng),利用,求出A,B兩點(diǎn)坐標(biāo),直接計(jì)算斜率.【詳解】對(duì)于 【答案】AC【解析】【分析】A選項(xiàng),直接聯(lián)立韋達(dá)定理求解;B選項(xiàng),計(jì)算出圓心到的距離和半徑進(jìn)行比較;C

12、選項(xiàng),寫出A,B兩點(diǎn)處的切線方程,聯(lián)立求出點(diǎn)G坐標(biāo),通過(guò)向量檢驗(yàn)垂直關(guān)系;D選項(xiàng),利用,求出A,B兩點(diǎn)坐標(biāo),直接計(jì)算斜率.【詳解】對(duì)于A,拋物線的焦點(diǎn)F,準(zhǔn)線方程,設(shè)直線l的方程,與拋物線方程聯(lián)立得,正確;對(duì)于B,以線段AF為直徑的圓圓心為,到直線的距離為,所以以線段AF為直徑的圓不與相切,錯(cuò)誤;對(duì)于C,點(diǎn)A處的切線方程為,即,點(diǎn)B處的切線方程為,聯(lián)立得G,即G,故GFAB,正確; 對(duì)于D,解得,當(dāng)時(shí),錯(cuò)誤.故選:AC.【點(diǎn)睛】本題關(guān)鍵在于選項(xiàng)C和D的判斷,C選項(xiàng)要通過(guò)導(dǎo)數(shù)寫出A,B兩點(diǎn)處的切線方程,進(jìn)而聯(lián)立求出點(diǎn)G坐標(biāo),D選項(xiàng)將轉(zhuǎn)化成坐標(biāo)關(guān)系,求出A,B兩點(diǎn)坐標(biāo).(多選,2022年江蘇徐州J

13、53)已知F是拋物線的焦點(diǎn),P是拋物線上一動(dòng)點(diǎn),Q是上一動(dòng)點(diǎn),則下列說(shuō)法正確的有( 【答案】AC【解析】【分析】根據(jù)拋物線的性質(zhì)判斷A,根據(jù)圓的性質(zhì)判斷B,結(jié)合拋物線的定義判斷C,D.【詳解】拋物線焦點(diǎn)為,準(zhǔn)線為,作出圖象,對(duì)選項(xiàng)A:由拋物線的性質(zhì)可知:的最小值為,選項(xiàng)A正確;對(duì)選項(xiàng)B:注意到F是定點(diǎn),由圓的性質(zhì)可知:的最小值為 【答案】AC【解析】【分析】根據(jù)拋物線的性質(zhì)判斷A,根據(jù)圓的性質(zhì)判斷B,結(jié)合拋物線的定義判斷C,D.【詳解】拋物線焦點(diǎn)為,準(zhǔn)線為,作出圖象,對(duì)選項(xiàng)A:由拋物線的性質(zhì)可知:的最小值為,選項(xiàng)A正確;對(duì)選項(xiàng)B:注意到F是定點(diǎn),由圓的性質(zhì)可知:的最小值為,選項(xiàng)B錯(cuò)誤;對(duì)選項(xiàng)C

14、D:過(guò)點(diǎn)P作拋物線準(zhǔn)線的垂線,垂足為M,由拋物線定義可知,故,的最小值為點(diǎn)Q到準(zhǔn)線的距離,故最小值為4,從而選項(xiàng)C正確,選項(xiàng)D錯(cuò)誤故選:AC.(多選3,2022年江蘇徐州J52)阿基米德是古希臘偉大的物理學(xué)家、數(shù)學(xué)家、天文學(xué)家,享有“數(shù)學(xué)之神”的稱號(hào)若拋物線上任意兩點(diǎn)A,B處的切線交于點(diǎn)P,則稱為“阿基米德三角形”已知拋物線的焦點(diǎn)為F,過(guò)拋物線上兩點(diǎn)A,B的直線的方程為,弦的中點(diǎn)為C,則關(guān)于“阿基米德三角形”,下列結(jié)論正確的是( 【答案】BCD【解析】【分析】設(shè),聯(lián)立直線方程和拋物線方程,消元后利用韋達(dá)定理結(jié)合導(dǎo)數(shù)逐項(xiàng)計(jì)算后可得正確的選項(xiàng).【詳解】由消y可得令,解得,A錯(cuò),軸, 【答案】BCD

15、【解析】【分析】設(shè),聯(lián)立直線方程和拋物線方程,消元后利用韋達(dá)定理結(jié)合導(dǎo)數(shù)逐項(xiàng)計(jì)算后可得正確的選項(xiàng).【詳解】由消y可得令,解得,A錯(cuò),軸,B對(duì),D對(duì),C對(duì),故選:BCD(多選,2022年江蘇南京J09)在平面直角坐標(biāo)系xOy中,已知拋物線的焦點(diǎn)為F,點(diǎn)P在拋物線C上,若為等腰三角形,則直線的斜率可能為( 【答案】AB【解析】【分析】由拋物線的定義求得,設(shè),得到,分、和,三種情況討論,結(jié)合選項(xiàng),即可求解.【詳解】由題意,拋物線的焦點(diǎn)為,因?yàn)?,由拋物線的定義,可得, 【答案】AB【解析】【分析】由拋物線的定義求得,設(shè),得到,分、和,三種情況討論,結(jié)合選項(xiàng),即可求解.【詳解】由題意,拋物線的焦點(diǎn)為,因

16、為,由拋物線的定義,可得,設(shè),可得,當(dāng)時(shí),可得,所以,則,所以B正確;當(dāng)時(shí),此時(shí)方程無(wú)解;當(dāng)時(shí),可得,所以,則,所以A正確.故選:AB(多選3,2022年江蘇南京金陵中學(xué)J08)在平面直角坐標(biāo)系xOy中,點(diǎn)F是拋物線的焦點(diǎn),點(diǎn),在拋物線C上,則下列結(jié)論正確的是( 【11題答案】【答案】ABD【解析】【分析】依據(jù)題意求得拋物線的標(biāo)準(zhǔn)方程.解得拋物線的準(zhǔn)線方程判斷選項(xiàng)A;解得參數(shù)b判斷選項(xiàng)B;求得判斷選項(xiàng)C;求得判斷選項(xiàng)D. 【11題答案】【答案】ABD【解析】【分析】依據(jù)題意求得拋物線的標(biāo)準(zhǔn)方程.解得拋物線的準(zhǔn)線方程判斷選項(xiàng)A;解得參數(shù)b判斷選項(xiàng)B;求得判斷選項(xiàng)C;求得判斷選項(xiàng)D.【詳解】點(diǎn),在

17、拋物線C上則,解之得則拋物線,選項(xiàng)A:拋物線C的準(zhǔn)線方程為.判斷正確;選項(xiàng)B:.判斷正確;選項(xiàng)C:.判斷錯(cuò)誤;選項(xiàng)D:拋物線C的焦點(diǎn),則,則.判斷正確.故選:ABD(多選3,2022年山東名校聯(lián)盟J55)在平面直角坐標(biāo)系xOy中,過(guò)點(diǎn)直線l與拋物線C:交于A,B兩點(diǎn),點(diǎn)為線段AB的中點(diǎn),且,則下列結(jié)論正確的為( 【答案】AC【解析】【分析】由可得,即可判斷A選項(xiàng);設(shè)出直線,聯(lián)立拋物線,由求出,即可判斷B選項(xiàng);由點(diǎn)差法即可求出l的斜率判斷C選項(xiàng);求出即可判斷D選項(xiàng).【詳解】由可得,則N為的外心,A正確; 【答案】AC【解析】【分析】由可得,即可判斷A選項(xiàng);設(shè)出直線,聯(lián)立拋物線,由求出,即可判斷B

18、選項(xiàng);由點(diǎn)差法即可求出l的斜率判斷C選項(xiàng);求出即可判斷D選項(xiàng).【詳解】由可得,則N為的外心,A正確;易得直線斜率不為0,設(shè),聯(lián)立可得,則,則,由可得,即,則,則焦點(diǎn)為,B錯(cuò)誤;由作差得,即,C正確;,則,D錯(cuò)誤.故選:AC.(多選4,2022年山東J53)阿基米德(公元前287年公元前212年)是古希臘偉大的物理學(xué)家、數(shù)學(xué)家、天文學(xué)家,不僅在物理學(xué)方面貢獻(xiàn)巨大,還享有“數(shù)學(xué)之神”的稱號(hào)拋物線上任意兩點(diǎn)A、B處的切線交于點(diǎn)P,稱為“阿基米德三角形”已知拋物線C:的焦點(diǎn)為F,過(guò)A、B兩點(diǎn)的直線的方程為,關(guān)于“阿基米德三角形”,下列結(jié)論正確的是( 【答案】ABD【解析】【分析】由直線方程與拋物線方程

19、聯(lián)立,解得兩點(diǎn)的坐標(biāo),計(jì)算線段的長(zhǎng)判斷A,利用導(dǎo)數(shù)的幾何意義求得切線方程,由切線斜率關(guān)系判斷B,兩切線方程聯(lián)立求得交點(diǎn)的坐標(biāo)判斷C,由直線的斜率關(guān)系判斷D.【詳解】設(shè),聯(lián)立,可得 【答案】ABD【解析】【分析】由直線方程與拋物線方程聯(lián)立,解得兩點(diǎn)的坐標(biāo),計(jì)算線段的長(zhǎng)判斷A,利用導(dǎo)數(shù)的幾何意義求得切線方程,由切線斜率關(guān)系判斷B,兩切線方程聯(lián)立求得交點(diǎn)的坐標(biāo)判斷C,由直線的斜率關(guān)系判斷D.【詳解】設(shè),聯(lián)立,可得,解得或,不妨設(shè),則,故,A項(xiàng)正確;又因?yàn)?,所以,故直線PA的斜率為,直線PA的方程為,即,同理可得直線PB的方程為,所以,B項(xiàng)正確;聯(lián)立,可得,故點(diǎn)P的坐標(biāo)為,C項(xiàng)錯(cuò)誤;易知點(diǎn)F的坐標(biāo)為,

20、所以,D項(xiàng)正確故選:ABD.(多選3,2022年河北演練一J39)設(shè)拋物線的焦點(diǎn)為F,準(zhǔn)線為l,為C上一動(dòng)點(diǎn),則下列結(jié)論正確的是( 【答案】BCD【解析】【分析】A選項(xiàng),求導(dǎo),求出在的導(dǎo)函數(shù)值,即切線斜率,進(jìn)而用點(diǎn)斜式求出切線方程;B選項(xiàng),由焦半徑求出的值;C選項(xiàng),利用拋物線定義得到,當(dāng)三點(diǎn)共線時(shí)和最小,求出最小值;D選項(xiàng),作出輔助線,找到.【詳解】當(dāng)時(shí),又,所以,所以拋物線C在點(diǎn)P處的切線方程為,整理得:,A錯(cuò)誤;當(dāng)時(shí),故, 【答案】BCD【解析】【分析】A選項(xiàng),求導(dǎo),求出在的導(dǎo)函數(shù)值,即切線斜率,進(jìn)而用點(diǎn)斜式求出切線方程;B選項(xiàng),由焦半徑求出的值;C選項(xiàng),利用拋物線定義得到,當(dāng)三點(diǎn)共線時(shí)和

21、最小,求出最小值;D選項(xiàng),作出輔助線,找到.【詳解】當(dāng)時(shí),又,所以,所以拋物線C在點(diǎn)P處的切線方程為,整理得:,A錯(cuò)誤;當(dāng)時(shí),故,B正確;如圖,過(guò)點(diǎn)P作PB準(zhǔn)線于點(diǎn)B,則由拋物線定義可知:,則,當(dāng)A、P、B三點(diǎn)共線時(shí),和最小,最小值為1+2=3,C正確;由題意得:,連接AF并延長(zhǎng),交拋物線于點(diǎn)P,此點(diǎn)即為取最大值的點(diǎn),此時(shí),其他位置的點(diǎn),由三角形兩邊之差小于第三邊得:,故的最大值為,D正確.故選:BCD(多選4,2022年河北滄州J30)已知拋物線C:(0)的焦點(diǎn)F與圓的圓心重合,直線與C交于兩點(diǎn),且滿足:(其中O為坐標(biāo)原點(diǎn)且A、B均不與O重合),則( 【答案】ABD【解析】【分析】求出圓心坐

22、標(biāo)得拋物線焦點(diǎn)坐標(biāo),從而得拋物線方程,直線斜率不為0,設(shè)方程為,代入拋物線方程,應(yīng)用韋達(dá)定理得,由求得,然后可得,并能得出直線所過(guò)定點(diǎn)坐標(biāo),設(shè)中點(diǎn)為,結(jié)合韋達(dá)定理的結(jié)論可求得中點(diǎn)軌跡方程,由兩點(diǎn)間距離公式求得,再求得原點(diǎn)到直線的距離可得三角形面積,從而得最小值【詳解】圓可化為,則,半徑r=1,拋物線的焦點(diǎn)為, 【答案】ABD【解析】【分析】求出圓心坐標(biāo)得拋物線焦點(diǎn)坐標(biāo),從而得拋物線方程,直線斜率不為0,設(shè)方程為,代入拋物線方程,應(yīng)用韋達(dá)定理得,由求得,然后可得,并能得出直線所過(guò)定點(diǎn)坐標(biāo),設(shè)中點(diǎn)為,結(jié)合韋達(dá)定理的結(jié)論可求得中點(diǎn)軌跡方程,由兩點(diǎn)間距離公式求得,再求得原點(diǎn)到直線的距離可得三角形面積,

23、從而得最小值【詳解】圓可化為,則,半徑r=1,拋物線的焦點(diǎn)為,拋物線C的方程為,由題可知直線l斜率若存在,則斜率不為0,故設(shè)l為,由,得,則,即,則,解得或(舍,否則直線l過(guò)原點(diǎn)),故A正確;直線方程為,恒過(guò)定點(diǎn),故B正確;設(shè)中點(diǎn)為,則,消去參數(shù)得,故C錯(cuò)誤;,原點(diǎn)到直線的距離為,時(shí),為最小值,故D正確故選:ABD【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:關(guān)鍵是設(shè)直線l為,通過(guò)韋達(dá)定理和可求出n的值,從而可判斷項(xiàng)AB,通過(guò)參數(shù)法可以求A、B中點(diǎn)的軌跡方程判斷C,結(jié)合弦長(zhǎng)公式和三角形面積公式即可求出AOB面積,從而判斷D(多選4,2022年湖北考協(xié)J50)已知拋物線:的焦點(diǎn)為,點(diǎn),在上,則下列說(shuō)法正確的是( 【答案】ABD【分析】對(duì)于A,過(guò)作的準(zhǔn)線的垂線,垂足為,則,結(jié)合圖形可求得結(jié)果,對(duì)于B,將點(diǎn)的坐標(biāo)代入拋物線方程中求出的值,然后由可得,從而可進(jìn)行判斷,對(duì)于C,由題意設(shè)直線的方程為,代入拋物線方程中化簡(jiǎn)結(jié)合根與系數(shù)的關(guān)系可得結(jié)果,對(duì)于D,由,即,從而可得結(jié)論【詳解】過(guò)作的準(zhǔn)線的垂線,垂足為,則,的最小值即為點(diǎn)到的準(zhǔn)線的距離,所以周長(zhǎng)的最小值為

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論