勾股定理 課件_第1頁(yè)
勾股定理 課件_第2頁(yè)
勾股定理 課件_第3頁(yè)
勾股定理 課件_第4頁(yè)
勾股定理 課件_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、課題:勾股定理活動(dòng) 計(jì)算單位網(wǎng)格中不規(guī)則擺放的正方形的面積活動(dòng)2: 探索三個(gè)正方形面積的關(guān)系.448491316925A的面積+B的面積=C的面積活動(dòng)2: 探索三個(gè)正方形面積的關(guān)系.活動(dòng)2: 探索三個(gè)正方形面積的關(guān)系.活動(dòng)2: 探索三個(gè)正方形面積的關(guān)系. 活動(dòng)3 隱去網(wǎng)格,直角三角形三條邊數(shù)量關(guān)系。隱去正方形,直角三角形三邊數(shù)量關(guān)系關(guān)系. 三邊長(zhǎng)度關(guān)系: 活動(dòng)4: (1)三角形最大角與三邊數(shù)量關(guān)系的相互作用?;顒?dòng)4: 如果直角三角形兩直角邊分別為a、b,斜邊為c,那么即 直角三角形兩直角邊的平方和等于斜邊的平方。abc利用拼圖來(lái)驗(yàn)證勾股定理:cab1、準(zhǔn)備四個(gè)全等的直角三角形(設(shè)直角三角形的兩

2、條直角邊分別為a,b,斜邊c);2、你能用這四個(gè)直角三角形拼成一個(gè)正方形嗎?拼一拼試試看3、你拼的正方形中是否含有以斜邊c為邊的正方形?4、你能否就你拼出的圖說(shuō)明a2+b2=c2?(4)(3)(2)(1)(1)(2)(3)(4)cccc(a-b)2(a-b)2C24ab=a2 + b2 = c2可得:a2+b22ab = c22abbCa想一想:這四個(gè)直角三角形還能怎樣拼?證明一bababa bacccc想一想:大正方形的面積該怎樣表示?(a+b)2=a2 + b2 + 2ab = c2+2ab可得: a2 + b2 = c2證明二證明3:bcabcaABCDa+b =c 勾股定理(gou-g

3、u theorem)如果直角三角形兩直角邊分別為a、b,斜邊為c,那么即 直角三角形兩直角邊的平方和等于斜邊的平方。abc勾股弦 讀一讀 我國(guó)古代把直角三角形中較短的直角邊稱為勾,較長(zhǎng)的直角邊稱為股,斜邊稱為弦.圖1-1稱為“弦圖”,最早是由三國(guó)時(shí)期的數(shù)學(xué)家趙爽在為周髀算經(jīng)作法時(shí)給出的. 弦股勾圖1-1圖1-2是在北京召開(kāi)的2002年國(guó)際數(shù)學(xué)家大會(huì)(TCM2002)的會(huì)標(biāo),其圖案正是“弦圖”,它標(biāo)志著中國(guó)古代的數(shù)學(xué)成就.圖1-2 兩千多年前,古希臘有個(gè)哥拉 斯學(xué)派,他們首先發(fā)現(xiàn)了勾股定理,因此在國(guó)外人們通常稱勾股定理為畢達(dá)哥拉斯年希臘曾經(jīng)發(fā)行了一枚紀(jì)念票。定理。為了紀(jì)念畢達(dá)哥拉斯學(xué)派,1955

4、勾 股 世 界國(guó)家之一。早在三千多年前,國(guó)家之一。早在三千多年前,國(guó)家之一。早在三千多年前,國(guó)家之一。早在三千多年前,國(guó)家之一。早在三千多年前,國(guó)家之一。早在三千多年前,國(guó)家之一。早在三千多年前,國(guó)家之一。早在三千多年前 兩千多年前,古希臘有個(gè)畢達(dá)哥拉斯學(xué)派,他們首先發(fā)現(xiàn)了勾股定理,因此在國(guó)外人們通常稱勾股定理為畢達(dá)哥拉斯定理。為了紀(jì)念畢達(dá)哥拉斯學(xué)派,1955年希臘曾經(jīng)發(fā)行了一枚紀(jì)念郵票。 我國(guó)是最早了解勾股定理的國(guó)家之一。早在三千多年前,周朝數(shù)學(xué)家商高就提出,將一根直尺折成一個(gè)直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被記載于我國(guó)古代著名的數(shù)學(xué)著作周髀算經(jīng)中。、本節(jié)課我們經(jīng)歷了怎樣的過(guò)程?經(jīng)歷了從實(shí)際問(wèn)題引入數(shù)學(xué)問(wèn)題然后發(fā)現(xiàn)定理,再到探索定理,最后學(xué)會(huì)驗(yàn)證定理及應(yīng)用定理解決實(shí)際問(wèn)題的過(guò)程。、本節(jié)課我們學(xué)到了什么?通過(guò)本節(jié)課的學(xué)習(xí)我們不但知道了著名的勾股定理,還知道從特殊到一般的探索方法及借助于圖形的面積來(lái)探索、驗(yàn)證數(shù)學(xué)結(jié)論的數(shù)形結(jié)合思想。、學(xué)了本節(jié)課后我們有什么感想?

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論