




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.將2001×1999變形正確的是()A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+12.如圖的幾何體中,主視圖是中心對稱圖形的是()A. B. C. D.3.如圖所示的圖形,是下面哪個正方體的展開圖()A. B. C. D.4.如圖,將矩形ABCD沿EM折疊,使頂點B恰好落在CD邊的中點N上.若AB=6,AD=9,則五邊形ABMND的周長為()A.28 B.26 C.25 D.225.如圖,在中,,,,點在以斜邊為直徑的半圓上,點是的三等分點,當點沿著半圓,從點運動到點時,點運動的路徑長為()A.或 B.或 C.或 D.或6.如果關于x的一元二次方程k2x2-(2k+1)x+1=0有兩個不相等的實數(shù)根,那么k的取值范圍是()A.k>- B.k>-且 C.k<- D.k-且7.關于的不等式的解集如圖所示,則的取值是A.0 B. C. D.8.如圖,每個小正方形的邊長為1,A、B、C是小正方形的頂點,則∠ABC的度數(shù)為()A.90° B.60° C.45° D.30°9.已知一次函數(shù)且隨的增大而增大,那么它的圖象不經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.如圖圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.已知點M(1,2)在反比例函數(shù)y=k12.如圖,在平面直角坐標系中,已知點A(﹣4,0)、B(0,3),對△AOB連續(xù)作旋轉變換依次得到三角形(1)、(2)、(3)、(4)、…,則第(5)個三角形的直角頂點的坐標是_____,第(2018)個三角形的直角頂點的坐標是______.13.如圖,等邊三角形的頂點A(1,1)、B(3,1),規(guī)定把等邊△ABC“先沿x軸翻折,再向左平移1個單位”為一次變換,如果這樣連續(xù)經(jīng)過2018次變換后,等邊△ABC的頂點C的坐標為_____.14.已知x3=y15.如圖,為了解全校300名男生的身高情況,隨機抽取若干男生進行身高測量,將所得數(shù)據(jù)(精確到1cm)整理畫出頻數(shù)分布直方圖(每組數(shù)據(jù)含最低值,不含最高值),估計該校男生的身高在170cm﹣175cm之間的人數(shù)約有_____人.16.因式分解:(a+1)(a﹣1)﹣2a+2=_____.17.如果,那么代數(shù)式的值是______.三、解答題(共7小題,滿分69分)18.(10分)某校對學生就“食品安全知識”進行了抽樣調查(每人選填一類),繪制了如圖所示的兩幅統(tǒng)計圖(不完整)。請根據(jù)圖中信息,解答下列問題:(1)根據(jù)圖中數(shù)據(jù),求出扇形統(tǒng)計圖中的值,并補全條形統(tǒng)計圖。(2)該校共有學生900人,估計該校學生對“食品安全知識”非常了解的人數(shù).19.(5分)鐵嶺市某商貿公司以每千克40元的價格購進一種干果,計劃以每千克60元的價格銷售,為了讓顧客得到更大的實惠,現(xiàn)決定降價銷售,已知這種干果銷售量y(千克)與每千克降價x(元)(0<x<20)之間滿足一次函數(shù)關系,其圖象如圖所示:求y與x之間的函數(shù)關系式;商貿公司要想獲利2090元,則這種干果每千克應降價多少元?該干果每千克降價多少元時,商貿公司獲利最大?最大利潤是多少元?20.(8分)解不等式組,請結合題意填空,完成本題的解答.(1)解不等式①,得_____;(2)解不等式②,得_____;(3)把不等式①和②的解集在數(shù)軸上表示出來;(4)原不等式組的解集為_____.21.(10分)如圖山坡上有一根旗桿AB,旗桿底部B點到山腳C點的距離BC為米,斜坡BC的坡度i=1:.小明在山腳的平地F處測量旗桿的高,點C到測角儀EF的水平距離CF=1米,從E處測得旗桿頂部A的仰角為45°,旗桿底部B的仰角為20°.(1)求坡角∠BCD;(2)求旗桿AB的高度.(參考數(shù)值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)22.(10分)2018年春節(jié),西安市政府實施“點亮工程”,開展“西安年·最中國”活動,元宵節(jié)晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。在美食一條街上,小明買了一碗元宵,共5個,其中黑芝麻餡兩個,五仁餡兩個,桂花餡一個,當元宵端上來的時候,看著五個大小、色澤一模一樣的元宵,小明的爸爸問了小明兩個問題:(1)小明吃到第一個元宵是五仁餡的概率是多少?請你幫小明直接寫出答案。(2)小明吃的前兩個元宵是同一種餡的元宵概率是多少?請你利用你列表或樹狀圖幫小明求出概率。23.(12分)為了增強居民節(jié)水意識,某市自來水公司對居民用水采用以戶為單位分段計費辦法收費.若用戶的月用水量不超過15噸,每噸收水費4元;用戶的月用水量超過15噸,超過15噸的部分,按每噸6元收費.(I)根據(jù)題意,填寫下表:月用水量(噸/戶)41016……應收水費(元/戶)40……(II)設一戶居民的月用水量為x噸,應收水費y元,寫出y關于x的函數(shù)關系式;(III)已知用戶甲上個月比用戶乙多用水6噸,兩戶共收水費126元,求他們上個月分別用水多少噸?24.(14分)如圖,在Rt△ABC中,∠ACB=90°,AC=2cm,AB=4cm,動點P從點C出發(fā),在BC邊上以每秒cm的速度向點B勻速運動,同時動點Q也從點C出發(fā),沿C→A→B以每秒4cm的速度勻速運動,運動時間為t秒,連接PQ,以PQ為直徑作⊙O.(1)當時,求△PCQ的面積;(2)設⊙O的面積為s,求s與t的函數(shù)關系式;(3)當點Q在AB上運動時,⊙O與Rt△ABC的一邊相切,求t的值.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
原式變形后,利用平方差公式計算即可得出答案.【詳解】解:原式=(2000+1)×(2000-1)=20002-1,故選A.【點睛】此題考查了平方差公式,熟練掌握平方差公式是解本題的關鍵.2、C【解析】解:球是主視圖是圓,圓是中心對稱圖形,故選C.3、D【解析】
根據(jù)展開圖中四個面上的圖案結合各選項能夠看見的面上的圖案進行分析判斷即可.【詳解】A.因為A選項中的幾何體展開后,陰影正方形的頂點不在陰影三角形的邊上,與展開圖不一致,故不可能是A:B.因為B選項中的幾何體展開后,陰影正方形的頂點不在陰影三角形的邊上,與展開圖不一致,故不可能是B;C.因為C選項中的幾何體能夠看見的三個面上都沒有陰影圖家,而展開圖中有四個面上有陰影圖室,所以不可能是C.D.因為D選項中的幾何體展開后有可能得到如圖所示的展開圖,所以可能是D;故選D.【點睛】本題考查了學生的空間想象能力,解決本題的關鍵突破口是掌握正方體的展開圖特征.4、A【解析】
如圖,運用矩形的性質首先證明CN=3,∠C=90°;運用翻折變換的性質證明BM=MN(設為λ),運用勾股定理列出關于λ的方程,求出λ,即可解決問題.【詳解】如圖,由題意得:BM=MN(設為λ),CN=DN=3;∵四邊形ABCD為矩形,∴BC=AD=9,∠C=90°,MC=9-λ;由勾股定理得:λ2=(9-λ)2+32,解得:λ=5,∴五邊形ABMND的周長=6+5+5+3+9=28,故選A.【點睛】該題主要考查了翻折變換的性質、矩形的性質、勾股定理等幾何知識點及其應用問題;解題的關鍵是靈活運用翻折變換的性質、矩形的性質、勾股定理等幾何知識點來分析、判斷、推理或解答.5、A【解析】
根據(jù)平行線的性質及圓周角定理的推論得出點M的軌跡是以EF為直徑的半圓,進而求出半徑即可得出答案,注意分兩種情況討論.【詳解】當點D與B重合時,M與F重合,當點D與A重合時,M與E重合,連接BD,F(xiàn)M,AD,EM,∵∴∵AB是直徑即∴∴點M的軌跡是以EF為直徑的半圓,∵∴以EF為直徑的圓的半徑為1∴點M運動的路徑長為當時,同理可得點M運動的路徑長為故選:A.【點睛】本題主要考查動點的運動軌跡,掌握圓周角定理的推論,平行線的性質和弧長公式是解題的關鍵.6、B【解析】
在與一元二次方程有關的求值問題中,必須滿足下列條件:(1)二次項系數(shù)不為零;(2)在有兩個實數(shù)根下必須滿足△=b2-4ac≥1.【詳解】由題意知,k≠1,方程有兩個不相等的實數(shù)根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.因此可求得k>且k≠1.故選B.【點睛】本題考查根據(jù)根的情況求參數(shù),熟記判別式與根的關系是解題的關鍵.7、D【解析】
首先根據(jù)不等式的性質,解出x≤,由數(shù)軸可知,x≤-1,所以=-1,解出即可;【詳解】解:不等式,解得x<,由數(shù)軸可知,所以,解得;故選:.【點睛】本題主要考查了不等式的解法和在數(shù)軸上表示不等式的解集,在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.8、C【解析】試題分析:根據(jù)勾股定理即可得到AB,BC,AC的長度,進行判斷即可.試題解析:連接AC,如圖:根據(jù)勾股定理可以得到:AC=BC=,AB=.∵()1+()1=()1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故選C.考點:勾股定理.9、B【解析】
根據(jù)一次函數(shù)的性質:k>0,y隨x的增大而增大;k<0,y隨x的增大而減小,進行解答即可.【詳解】解:∵一次函數(shù)y=kx-3且y隨x的增大而增大,
∴它的圖象經(jīng)過一、三、四象限,
∴不經(jīng)過第二象限,
故選:B.【點睛】本題考查了一次函數(shù)的性質,掌握一次函數(shù)所經(jīng)過的象限與k、b的值有關是解題的關鍵.10、A【解析】A.是軸對稱圖形,是中心對稱圖形,故本選項正確;B.是中心對稱圖,不是軸對稱圖形,故本選項錯誤;C.不是中心對稱圖,是軸對稱圖形,故本選項錯誤;D.不是軸對稱圖形,是中心對稱圖形,故本選項錯誤。故選A.二、填空題(共7小題,每小題3分,滿分21分)11、-2【解析】k==1×(-2)=-212、(16,)(8068,)【解析】
利用勾股定理列式求出AB的長,再根據(jù)圖形寫出第(5)個三角形的直角頂點的坐標即可;觀察圖形不難發(fā)現(xiàn),每3個三角形為一個循環(huán)組依次循環(huán),用2018除以3,根據(jù)商和余數(shù)的情況確定出第(2018)個三角形的直角頂點到原點O的距離,然后寫出坐標即可.【詳解】∵點A(﹣4,0),B(0,3),∴OA=4,OB=3,∴AB==5,∴第(2)個三角形的直角頂點的坐標是(4,);∵5÷3=1余2,∴第(5)個三角形的直角頂點的坐標是(16,),∵2018÷3=672余2,∴第(2018)個三角形是第672組的第二個直角三角形,其直角頂點與第672組的第二個直角三角形頂點重合,∴第(2018)個三角形的直角頂點的坐標是(8068,).故答案為:(16,);(8068,)【點睛】本題考查了坐標與圖形變化-旋轉,解題的關鍵是根據(jù)題意找出每3個三角形為一個循環(huán)組依次循環(huán).13、(﹣2016,+1)【解析】
據(jù)軸對稱判斷出點C變換后在x軸上方,然后求出點C縱坐標,再根據(jù)平移的距離求出點A變換后的橫坐標,最后寫出即可.【詳解】解:∵△ABC是等邊三角形AB=3﹣1=2,∴點C到x軸的距離為1+2×=+1,橫坐標為2,∴C(2,+1),第2018次變換后的三角形在x軸上方,點C的縱坐標為+1,橫坐標為2﹣2018×1=﹣2016,所以,點C的對應點C′的坐標是(﹣2016,+1)故答案為:(﹣2016,+1)【點睛】本題考查坐標與圖形變化,平移和軸對稱變換,等邊三角形的性質,讀懂題目信息,確定出連續(xù)2018次這樣的變換得到三角形在x軸上方是解題的關鍵.14、7【解析】
由x3=y4可知xy【詳解】解:∵x3∴xy∴原式=xy【點睛】本題考查了分式的化簡求值.15、1【解析】
用總人數(shù)300乘以樣本中身高在170cm-175cm之間的人數(shù)占被調查人數(shù)的比例.【詳解】估計該校男生的身高在170cm-175cm之間的人數(shù)約為300×=1(人),故答案為1.【點睛】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力;利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.16、(a﹣1)1.【解析】
提取公因式(a?1),進而分解因式得出答案.【詳解】解:(a+1)(a﹣1)﹣1a+1=(a+1)(a﹣1)﹣1(a﹣1)=(a﹣1)(a+1﹣1)=(a﹣1)1.故答案為:(a﹣1)1.【點睛】此題主要考查了提取公因式法分解因式,找出公因式是解題關鍵.17、1【解析】分析:對所求代數(shù)式根據(jù)分式的混合運算順序進行化簡,再把變形后整體代入即可.詳解:故答案為1.點睛:考查分式的混合運算,掌握運算順序是解題的關鍵.注意整體代入法的運用.三、解答題(共7小題,滿分69分)18、(1),補全條形統(tǒng)計圖見解析;(2)該校學生對“食品安全知識”非常了解的人數(shù)為135人?!窘馕觥吭囶}分析:(1)由統(tǒng)計圖中的信息可知,B組學生有32人,占總數(shù)的40%,由此可得被抽查學生總人數(shù)為:32÷40%=80(人),結合C組學生有28人可得:m%=28÷80×100%=35%,由此可得m=35;由80-32-28-8=12(人)可知A組由12人,由此即可補全條形統(tǒng)計圖了;(2)由(1)中計算可知,A組有12名學生,占總數(shù)的12÷80×100%=15%,結合全??側藬?shù)為900可得900×15%=135(人),即全?!胺浅A私狻薄笆称钒踩R”的有135人.試題解析:(1)由已知條件可得:被抽查學生總數(shù)為32÷40%=80(人),∴m%=28÷80×100%=35%,∴m=35,A組人數(shù)為:80-32-28-8=12(人),將圖形統(tǒng)計圖補充完整如下圖所示:(2)由題意可得:900×(12÷80×100%)=900×15%=135(人).答:全校學生對“食品安全知識”非常了解的人數(shù)為135人.19、(1)y=10x+100;(2)這種干果每千克應降價9元;(3)該干果每千克降價5元時,商貿公司獲利最大,最大利潤是2250元.【解析】
(1)由待定系數(shù)法即可得到函數(shù)的解析式;(2)根據(jù)銷售量×每千克利潤=總利潤列出方程求解即可;(3)根據(jù)銷售量×每千克利潤=總利潤列出函數(shù)解析式求解即可.【詳解】(1)設y與x之間的函數(shù)關系式為:y=kx+b,把(2,120)和(4,140)代入得,,解得:,∴y與x之間的函數(shù)關系式為:y=10x+100;(2)根據(jù)題意得,(60﹣40﹣x)(10x+100)=2090,解得:x=1或x=9,∵為了讓顧客得到更大的實惠,∴x=9,答:這種干果每千克應降價9元;(3)該干果每千克降價x元,商貿公司獲得利潤是w元,根據(jù)題意得,w=(60﹣40﹣x)(10x+100)=﹣10x2+100x+2000,∴w=﹣10(x﹣5)2+2250,∵a=-10,∴當x=5時,故該干果每千克降價5元時,商貿公司獲利最大,最大利潤是2250元.【點睛】本題考查的是二次函數(shù)的應用,此類題目主要考查學生分析、解決實際問題能力,又能較好地考查學生“用數(shù)學”的意識.20、(1)x>1;(1)x≤1;(3)答案見解析;(4)1<x≤1.【解析】
根據(jù)一元一次不等式的解法分別解出兩個不等式,根據(jù)不等式的解集的確定方法得到不等式組的解集.【詳解】解:(1)解不等式①,得x>1;(1)解不等式②,得x≤1;(3)把不等式①和②的解集在數(shù)軸上表示出來:(4)原不等式組的解集為:1<x≤1.【點睛】本題考查了一元一次不等式組的解法,掌握確定解集的規(guī)律:同大取大;同小取??;大小小大中間找;大大小小找不到是解題的關鍵.21、旗桿AB的高度為6.4米.【解析】分析:(1)根據(jù)坡度i與坡角α之間的關系為:i=tanα進行計算;(2)根據(jù)余弦的概念求出CD,根據(jù)正切的概念求出AG、BG,計算即可.本題解析:(1)∵斜坡BC的坡度i=1:,∴tan∠BCD=,∴∠BCD=30°;(2)在Rt△BCD中,CD=BC×cos∠BCD=6×=9,則DF=DC+CF=10(米),∵四邊形GDFE為矩形,∴GE=DF=10(米),∵∠AEG=45°,∴AG=DE=10(米),在Rt△BEG中,BG=GE×tan∠BEG=10×0.36=3.6(米),則AB=AG?BG=10?3.6=6.4(米).答:旗桿AB的高度為6.4米。22、(1);(2).【解析】
(1)根據(jù)概率=所求情況數(shù)與總情況數(shù)之比代入解得即可.(2)將小明吃到的前兩個元宵的所有情況列表出來即可求解.【詳解】(1)5個元宵中,五仁餡的有2個,故小明吃到的第一個元宵是五仁餡的概率是;(2)小明吃到的前兩個元宵的所有情況列表如下(記黑芝麻餡的兩個分別為、,五仁餡的兩個分別為、,桂花餡的一個為c):由圖可知,共有20種等可能的情況,其中小明吃到的前兩個元宵是同一種餡料的情況有4種,故小明吃到的前兩個元宵是同一種餡料的概率是.【點睛】本題考查的是用列表法求概率.列表法可以不重復不遺漏的列出所有可能的結果,用到的知識點為:概率=所求:情況數(shù)與總情況數(shù)之比.23、(Ⅰ)16;66;(Ⅱ)當x≤15時,y=4x;當x>15時,y=6x﹣30;(Ⅲ)居民甲上月用水量為18噸,居民乙用水12噸【解析】
(Ⅰ)根據(jù)題意計算即可;(Ⅱ)根據(jù)分段函數(shù)解答即可;(Ⅲ)根據(jù)題意,可以分段利用方程或方程組解決用水量問題.【詳解】解:(Ⅰ)當月用水量為4噸時,應收水費=4×4=16元;當月用水量為16噸時,應收水費=15×4+1×6=66元;故答案為16;66;(Ⅱ)當x≤15時,y=4x;當x>15時,y=15×4+(x﹣15)×6=6x﹣30;(Ⅲ)設居民甲上月用水量為X噸,居民乙用水(X﹣6)噸.由題意:X﹣6<15且X>15時,4(X﹣6)+15×4+(X﹣15)×6=126X=18,∴居民甲上月用水量為18噸,居民乙用水12噸.【點睛】本題考查的是用一次函數(shù)解決實際問題,此類題是近年中考中的熱點問題.注意在實際問題中,利用方程或方程組是解決問題的常用方法.24、(1);(2)①;②;(3)t的值為或1或.【解析】
(1)先根據(jù)t的值計算CQ和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 杭州電子科技大學《建筑與家居木制品》2023-2024學年第二學期期末試卷
- 濟南幼兒師范高等??茖W?!秾W前兒童家庭教育與社區(qū)教育》2023-2024學年第二學期期末試卷
- 湖南工業(yè)職業(yè)技術學院《Python實訓》2023-2024學年第二學期期末試卷
- 貴州師范學院《社會設計》2023-2024學年第二學期期末試卷
- 重慶醫(yī)藥高等??茖W?!盾浖こ叹C合設計》2023-2024學年第二學期期末試卷
- 2024年電腦刺繡機項目資金申請報告代可行性研究報告
- 兒童系列玩具包裝設計
- 環(huán)境藝術設計專業(yè)畢業(yè)設計
- 2025年新疆伊犁農四師國有資產(chǎn)投資有限責任公司招聘筆試參考題庫含答案解析
- 2025年貴州中國城投建設集團第四工程局有限公司招聘筆試參考題庫含答案解析
- 農產(chǎn)品質量追溯系統(tǒng)方案
- DB1310-T 223-2020 小麥節(jié)水綠色豐產(chǎn)栽培技術規(guī)程
- 215kWh工商業(yè)液冷儲能電池一體柜用戶手冊
- 教育學研究答辯模板
- 《鋼鐵是怎樣煉成的》讀書分享課件
- 2024-2030年中國耐火材料行業(yè)供需分析及發(fā)展前景研究報告
- 中小學(幼兒園)公共安全教育教師說課比賽評分細則
- 2024【小學組】漢字聽寫大會競賽考試題庫(含答案)
- 新人教版數(shù)學四年級下冊全冊課本練習題可編輯可打印
- 藝術概論智慧樹知到答案2024年寧波財經(jīng)學院
- 部門級安全培訓考試題附答案【考試直接用】
評論
0/150
提交評論