2011-2020年高考數(shù)學(xué)真題分類匯編 專題35 不等式選講(含解析)_第1頁(yè)
2011-2020年高考數(shù)學(xué)真題分類匯編 專題35 不等式選講(含解析)_第2頁(yè)
2011-2020年高考數(shù)學(xué)真題分類匯編 專題35 不等式選講(含解析)_第3頁(yè)
2011-2020年高考數(shù)學(xué)真題分類匯編 專題35 不等式選講(含解析)_第4頁(yè)
2011-2020年高考數(shù)學(xué)真題分類匯編 專題35 不等式選講(含解析)_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題35不等式選講十年大數(shù)據(jù)*全景展示年份題號(hào)考點(diǎn)考查內(nèi)容2011文理24不等式選講絕對(duì)值不等式的解法2012文理24不等式選講絕對(duì)值不等式的解法,不等式恒成立參數(shù)取值范圍問(wèn)題的解法2013卷1文理24不等式選講絕對(duì)值不等式的解法,不等式恒成立參數(shù)取值范圍問(wèn)題的解法卷2文理24不等式選講多元不等式的證明2014卷1文理24不等式選講基本不等式的應(yīng)用卷2文理24不等式選講絕對(duì)值不等式的解法2015卷1文理24不等式選講絕對(duì)值不等式的解法,不等式恒成立參數(shù)取值范圍問(wèn)題的解法卷2文理24不等式選講不等式的證明2016卷1文理24不等式選講分段函數(shù)的圖像,絕對(duì)值不等式的解法卷2文理24不等式選講絕對(duì)值不等式的解法,絕對(duì)值不等式的證明卷3文理24不等式選講絕對(duì)值不等式的解法,不等式恒成立參數(shù)取值范圍問(wèn)題的解法2017卷1文理23不等式選講絕對(duì)值不等式的解法,不等式恒成立參數(shù)取值范圍問(wèn)題的解法卷2文理23不等式選講不等式的證明卷3文理23不等式選講絕對(duì)值不等式的解法,絕對(duì)值不等式解集非空的參數(shù)取值范圍問(wèn)題2018卷1文理23不等式選講絕對(duì)值不等式的解法,不等式恒成立參數(shù)取值范圍問(wèn)題的解法卷2文理23不等式選講絕對(duì)值不等式的解法,不等式恒成立參數(shù)取值范圍問(wèn)題的解法卷3文理23不等式選講絕對(duì)值函數(shù)的圖象,不等式恒成立參數(shù)最值問(wèn)題的解法2019卷1文理23不等式選講三元條件不等式的證明卷2文理23不等式選講絕對(duì)值不等式的解法,不等式恒成立參數(shù)取值范圍問(wèn)題的解法卷3文理23不等式選講三元條件最值問(wèn)題的解法,三元條件不等式的證明2020卷1文理23不等式選講絕對(duì)值函數(shù)的圖像,絕對(duì)值不等式的解法卷2文理23不等式選講絕對(duì)值不等式的解法,不等式恒成立參數(shù)取值范圍問(wèn)題的解法卷3文理23不等式選講三元條件不等式的證明大數(shù)據(jù)分析*預(yù)測(cè)高考考點(diǎn)出現(xiàn)頻率2021年預(yù)測(cè)考點(diǎn)120絕對(duì)值不等式的求解23次考4次2021年主要考查絕對(duì)值不等式的解法、絕對(duì)值不等式的證明,不等式恒成立參數(shù)取值范圍問(wèn)題的解法等.考點(diǎn)121含絕對(duì)值不等式的恒成立問(wèn)題23次考12次考點(diǎn)122不等式的證明23次考7次十年試題分類*探求規(guī)律考點(diǎn)120絕對(duì)值不等式的求解1.(2020全國(guó)Ⅰ文理22)已知函數(shù)SKIPIF1<0.(1)畫出SKIPIF1<0的圖像;(2)求不等式SKIPIF1<0的解集.【解析】(1)∵SKIPIF1<0,作出圖像,如圖所示:(2)將函數(shù)SKIPIF1<0的圖像向左平移SKIPIF1<0個(gè)單位,可得函數(shù)SKIPIF1<0的圖像,如圖所示:由SKIPIF1<0,解得SKIPIF1<0,∴不等式的解集為SKIPIF1<0.2.(2020江蘇23)設(shè)SKIPIF1<0,解不等式SKIPIF1<0.【答案】SKIPIF1<0【思路導(dǎo)引】根據(jù)絕對(duì)值定義化為三個(gè)不等式組,解得結(jié)果.【解析】SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,∴解集為SKIPIF1<0.3.(2016全國(guó)I文理)已知函數(shù)SKIPIF1<0.(I)在圖中畫出SKIPIF1<0的圖像;(II)求不等式SKIPIF1<0的解集.【解析】(1)如圖所示:(2),.當(dāng),,解得或,;當(dāng),,解得或,或;當(dāng),,解得或,或.綜上,或或,,解集為.4.(2014全國(guó)II文理)設(shè)函數(shù)SKIPIF1<0=SKIPIF1<0(Ⅰ)證明:SKIPIF1<0SKIPIF1<02;(Ⅱ)若SKIPIF1<0,求SKIPIF1<0的取值范圍.【解析】(I)由SKIPIF1<0,有SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0≥2.(Ⅱ)SKIPIF1<0.當(dāng)時(shí)SKIPIF1<0>3時(shí),SKIPIF1<0=SKIPIF1<0,由SKIPIF1<0<5得3<SKIPIF1<0<SKIPIF1<0;當(dāng)0<SKIPIF1<0≤3時(shí),SKIPIF1<0=SKIPIF1<0,由SKIPIF1<0<5得SKIPIF1<0<SKIPIF1<0≤3.綜上:SKIPIF1<0的取值范圍是(SKIPIF1<0,SKIPIF1<0).5.(2011新課標(biāo)文理)設(shè)函數(shù),其中.(Ⅰ)當(dāng)時(shí),求不等式的解集;(Ⅱ)若不等式的解集為,求a的值.【解析】(Ⅰ)當(dāng)時(shí),可化為,由此可得或.故不等式的解集為或.(

Ⅱ)由得,此不等式化為不等式組或,即SKIPIF1<0或SKIPIF1<0,因?yàn)?,∴不等式組的解集為,由題設(shè)可得=,故.考點(diǎn)121含絕對(duì)值不等式的恒成立問(wèn)題6.(2020全國(guó)Ⅱ文理22)已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求不等式SKIPIF1<0的解集;(2)若SKIPIF1<0,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0或SKIPIF1<0;(2)SKIPIF1<0.【思路導(dǎo)引】(1)分別在SKIPIF1<0、SKIPIF1<0和SKIPIF1<0三種情況下解不等式求得結(jié)果;(2)利用絕對(duì)值三角不等式可得到SKIPIF1<0,由此構(gòu)造不等式求得結(jié)果.【解析】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,解得:SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,無(wú)解;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,解得:SKIPIF1<0;綜上所述:SKIPIF1<0的解集為SKIPIF1<0或SKIPIF1<0.(2)SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào)),SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0,SKIPIF1<0的取值范圍為SKIPIF1<0.7.(2019全國(guó)II文理23)[選修4-5:不等式選講](10分)已知(1)當(dāng)時(shí),求不等式的解集;(2)若時(shí),,求的取值范圍.【解析】(1)當(dāng)a=1時(shí),.當(dāng)時(shí),;當(dāng)時(shí),,∴不等式的解集為.(2)因?yàn)椋啵?dāng),時(shí),∴的取值范圍是.8.(2018全國(guó)Ⅰ文理)已知SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求不等式SKIPIF1<0的解集;(2)若SKIPIF1<0時(shí)不等式SKIPIF1<0成立,求SKIPIF1<0的取值范圍.【解析】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0故不等式SKIPIF1<0的解集為SKIPIF1<0.(2)當(dāng)SKIPIF1<0時(shí)SKIPIF1<0成立等價(jià)于當(dāng)SKIPIF1<0時(shí)SKIPIF1<0成立.若SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí)SKIPIF1<0;若SKIPIF1<0,SKIPIF1<0的解集為SKIPIF1<0,∴SKIPIF1<0,故SKIPIF1<0.綜上,SKIPIF1<0的取值范圍為SKIPIF1<0.9.(2018全國(guó)Ⅱ文理)設(shè)函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求不等式SKIPIF1<0的解集;(2)若SKIPIF1<0,求SKIPIF1<0的取值范圍.【解析】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0可得SKIPIF1<0的解集為SKIPIF1<0.(2)SKIPIF1<0等價(jià)于SKIPIF1<0.而SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí)等號(hào)成立.故SKIPIF1<0等價(jià)于SKIPIF1<0.由SKIPIF1<0可得SKIPIF1<0或SKIPIF1<0,∴SKIPIF1<0的取值范圍是SKIPIF1<0.10.(2018全國(guó)Ⅲ文理)設(shè)函數(shù)SKIPIF1<0.(1)畫出SKIPIF1<0的圖像;(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,求SKIPIF1<0的最小值.【解析】(1)SKIPIF1<0SKIPIF1<0的圖像如圖所示.(2)由(1)知,SKIPIF1<0的圖像與SKIPIF1<0軸交點(diǎn)的縱坐標(biāo)為2,且各部分所在直線斜率的最大值為3,故當(dāng)且僅當(dāng)SKIPIF1<0且SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0成立,因此SKIPIF1<0的最小值為5.11.(2018江蘇)若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為實(shí)數(shù),且SKIPIF1<0,求SKIPIF1<0的最小值.【解析】由柯西不等式,得SKIPIF1<0.因?yàn)镾KIPIF1<0,∴SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),不等式取等號(hào),此時(shí)SKIPIF1<0,∴SKIPIF1<0的最小值為4.12.(2017全國(guó)Ⅰ文理)已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求不等式SKIPIF1<0的解集;(2)若不等式SKIPIF1<0的解集包含SKIPIF1<0,求SKIPIF1<0的取值范圍.【解析】(1)當(dāng)SKIPIF1<0時(shí),不等式SKIPIF1<0等價(jià)于SKIPIF1<0.①當(dāng)SKIPIF1<0時(shí),①式化為SKIPIF1<0,無(wú)解;當(dāng)SKIPIF1<0時(shí),①式化為SKIPIF1<0,從而SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),①式化為SKIPIF1<0,從而SKIPIF1<0,∴SKIPIF1<0的解集為SKIPIF1<0.(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0的解集包含SKIPIF1<0,等價(jià)于當(dāng)SKIPIF1<0時(shí)SKIPIF1<0.又SKIPIF1<0在SKIPIF1<0的最小值必為SKIPIF1<0與SKIPIF1<0之一,∴SKIPIF1<0且SKIPIF1<0,得SKIPIF1<0,∴SKIPIF1<0的取值范圍為SKIPIF1<0.13.(2017全國(guó)Ⅲ文理)已知函數(shù)SKIPIF1<0.(1)求不等式SKIPIF1<0的解集;(2)若不等式SKIPIF1<0的解集非空,求SKIPIF1<0的取值范圍.【解析】(1)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0無(wú)解;當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0得,SKIPIF1<0,解得SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0解得SKIPIF1<0.∴SKIPIF1<0的解集為SKIPIF1<0.(2)由SKIPIF1<0得SKIPIF1<0,而SKIPIF1<0SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故m的取值范圍為SKIPIF1<0.14.(2016全國(guó)III文理)已知函數(shù)SKIPIF1<0(Ⅰ)當(dāng)a=2時(shí),求不等式SKIPIF1<0的解集;(Ⅱ)設(shè)函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,求a的取值范圍.【解析】(Ⅰ)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.解不等式SKIPIF1<0,得SKIPIF1<0,因此SKIPIF1<0的解集為SKIPIF1<0.(Ⅱ)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)等號(hào)成立,∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0等價(jià)于SKIPIF1<0.①當(dāng)SKIPIF1<0時(shí),①等價(jià)于SKIPIF1<0,無(wú)解.當(dāng)SKIPIF1<0時(shí),①等價(jià)于SKIPIF1<0,解得SKIPIF1<0.∴SKIPIF1<0的取值范圍是SKIPIF1<0.15.(2015全國(guó)I文理)已知函數(shù)SKIPIF1<0,SKIPIF1<0.(Ⅰ)當(dāng)SKIPIF1<0時(shí),求不等式SKIPIF1<0的解集;(Ⅱ)若SKIPIF1<0的圖像與SKIPIF1<0軸圍成的三角形面積大于6,求SKIPIF1<0的取值范圍.【解析】(Ⅰ)當(dāng)SKIPIF1<0時(shí),不等式SKIPIF1<0化為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),不等式化為SKIPIF1<0,無(wú)解;當(dāng)SKIPIF1<0時(shí),不等式化為SKIPIF1<0,解得SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),不等式化為SKIPIF1<0,解得SKIPIF1<0.∴SKIPIF1<0的解集為SKIPIF1<0.(Ⅱ)有題設(shè)可得,SKIPIF1<0,∴函數(shù)SKIPIF1<0圖象與SKIPIF1<0軸圍成的三角形的三個(gè)頂點(diǎn)分別為SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0.有題設(shè)得SKIPIF1<0,故SKIPIF1<0.∴SKIPIF1<0的取值范圍為SKIPIF1<0.16.(2014全國(guó)I文理)若SKIPIF1<0,且SKIPIF1<0.(Ⅰ)求SKIPIF1<0的最小值;(Ⅱ)是否存在SKIPIF1<0,使得SKIPIF1<0?并說(shuō)明理由.【解析】(=1\*ROMANI)由SKIPIF1<0,得SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí)取等號(hào).故SKIPIF1<0SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí)取等號(hào).∴SKIPIF1<0的最小值為SKIPIF1<0.(=2\*ROMANII)由(=1\*ROMANI)知,SKIPIF1<0.由于SKIPIF1<0,從而不存在SKIPIF1<0,使得SKIPIF1<0.16.(2013全國(guó)I文理)已知函數(shù)=,=.(Ⅰ)當(dāng)=-2時(shí),求不等式<的解集;(Ⅱ)設(shè)>-1,且當(dāng)∈[,)時(shí),≤,求的取值范圍.【解析】(Ⅰ)當(dāng)=SKIPIF1<02時(shí),不等式<化為,設(shè)函數(shù)=,=,其圖像如圖所示,從圖像可知,當(dāng)且僅當(dāng)時(shí),<0,∴原不等式解集是.(Ⅱ)當(dāng)∈[,)時(shí),=,不等式≤化為SKIPIF1<0,∴SKIPIF1<0對(duì)∈[,)都成立,故SKIPIF1<0,即≤,∴的取值范圍為(SKIPIF1<01,].17.(2012新課標(biāo)文理)已知函數(shù)SKIPIF1<0.(Ⅰ)當(dāng)SKIPIF1<0時(shí),求不等式SKIPIF1<0的解集;(Ⅱ)若SKIPIF1<0的解集包含SKIPIF1<0,求SKIPIF1<0的取值范圍.【解析】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0或SKIPIF1<0或SKIPIF1<0SKIPIF1<0或SKIPIF1<0.(2)原命題SKIPIF1<0在SKIPIF1<0上恒成立SKIPIF1<0在SKIPIF1<0上恒成立SKIPIF1<0在SKIPIF1<0上恒成立SKIPIF1<0.考點(diǎn)122不等式的證明18.(2020全國(guó)Ⅲ文理23)設(shè)SKIPIF1<0.(1)證明:SKIPIF1<0;(2)用SKIPIF1<0表示SKIPIF1<0的最大值,證明:SKIPIF1<0.【答案】(1)證明見(jiàn)解析(2)證明見(jiàn)解析.【思路導(dǎo)引】(1)根據(jù)題設(shè)條件SKIPIF1<0兩邊平方,再利用均值不等式證明即可;(2)思路一:不妨設(shè)SKIPIF1<0,由題意得出SKIPIF1<0,由SKIPIF1<0,結(jié)合基本不等式,即可得出證明.思路二:假設(shè)出SKIPIF1<0中最大值,根據(jù)反證法與基本不等式推出矛盾,即可得出結(jié)論.【解析】(1)證明:SKIPIF1<0SKIPIF1<0即SKIPIF1<0SKIPIF1<0(2)證法一:不妨設(shè)SKIPIF1<0,由SKIPIF1<0可知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),取等號(hào),SKIPIF1<0,即SKIPIF1<0.證法二:不妨設(shè)SKIPIF1<0,則SKIPIF1<0而SKIPIF1<0矛盾,∴命題得證.19.(2019全國(guó)I文理23)已知a,b,c為正數(shù),且滿足abc=1.證明:(1);(2).【解析】(1)因?yàn)?,又,故有,∴?2)因?yàn)闉檎龜?shù)且,故有=24.∴.20.(2019全國(guó)III文理23)設(shè),且.(1)求的最小值;(2)若成立,證明:或.【解析】(1)由于,故由已知得,當(dāng)且僅當(dāng)x=,y=–,時(shí)等號(hào)成立.∴的最小值為.(2)由于,故由已知,當(dāng)且僅當(dāng),,時(shí)等號(hào)成立,因此的最小值為.由題設(shè)知,解得或.21.(2017全國(guó)Ⅱ文理)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,證明:(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)SKIPIF1<0SKIPIF1<0SKIPIF1<0.(2)∵SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,因此SKIPIF1<0.22.(2017江蘇)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為實(shí)數(shù),且SKIPIF1<0,SKIPIF1<0,證明SKIPIF1<0.【解析】證明:由柯西不等式可得:SKIPIF1<0,因?yàn)镾KIPIF1<0∴SKIPIF1<0,因此SKIPIF1<0.23.(2016全國(guó)II文理)已知函數(shù)SKIPIF1<0,M為不等式SKIPIF1<0的解集.(I)求M;(II)證明:當(dāng)a,SKIPIF1<0時(shí),SKIPIF1<0.【解析】(I)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,若SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論