




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆重慶西南大學附屬中學高二上數學期末學業(yè)質量監(jiān)測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若橢圓上一點到C的兩個焦點的距離之和為,則()A.1 B.3C.6 D.1或32.已知圓上有三個點到直線的距離等于1,則的值為()A. B.C. D.13.平面的法向量為,平面的法向量為,則下列命題正確的是()A.,平行 B.,垂直C.,重合 D.,相交不垂直4.直線關于直線對稱的直線方程為()A. B.C. D.5.曲線在處的切線如圖所示,則()A.0 B.C. D.6.已知橢圓的左、右焦點分別為、,點A是橢圓短軸的一個頂點,且,則橢圓的離心率()A. B.C. D.7.“,”是“方程表示雙曲線”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.已知且,則下列不等式恒成立的是A. B.C. D.9.已知△的頂點B,C在橢圓上,頂點A是橢圓的一個焦點,且橢圓的另一個焦點在BC邊上,則△的周長是()A. B.C.8 D.1610.在區(qū)間內隨機取一個數,則方程表示焦點在軸上的橢圓的概率是A. B.C. D.11.下列雙曲線中,以為一個焦點,以為一個頂點的雙曲線方程是()A. B.C. D.12.若,則=()A.244 B.1C. D.二、填空題:本題共4小題,每小題5分,共20分。13.命題“存在x∈R,使得x2+2x+5=0”的否定是14.已知數列{}的前n項和為,則該數列的通項公式__________.15.某部門計劃對某路段進行限速,為調查限速60km/h是否合理,對通過該路段的300輛汽車的車速進行檢測,將所得數據按,,,分組,繪制成如圖所示頻率分布直方圖.則________;這300輛汽車中車速低于限速60km/h的汽車有______輛.16.4與16的等比中項是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)數字人民幣是由央行發(fā)行的法定數字貨幣,它由指定運營機構參與運營并向公眾兌換,與紙鈔和硬幣等價.截至2021年6月30日,數字人民幣試點場景已超132萬個,覆蓋生活繳費、餐飲服務、交通出行、購物消費、政務服務等領域.為了進一步了解普通大眾對數字人民幣的感知以及接受情況,某機構進行了一次問卷調查,結果如下:學歷小學及以下初中高中大學專科大學本科碩士研究生及以上不了解數字人民幣35358055646了解數字人民幣406015011014025(1)如果將高中及高中以下的學歷稱為“低學歷”,大學??萍耙陨蠈W歷稱為“高學歷”,根據所給數據,完成列聯(lián)表.低學歷高學歷合計不了解數字人民幣了解數字人民幣合計(2)若從低學歷的被調查者中隨機抽取2人進行進一步調查,求被選中的2人中至少有1人對數字人民幣不了解的概率:(3)根據列聯(lián)表,判斷是否有的把握認為“是否了解數字人民幣”與“學歷高低”有關?0.0500.0100.001k3.8416.63510.828附:.18.(12分)已知拋物線的焦點為,點在拋物線上,且的面積為(為坐標原點)(1)求拋物線的標準方程;(2)點、是拋物線上異于原點的兩點,直線、的斜率分別為、,若,求證:直線恒過定點19.(12分)已知等差數列公差不為0,且成等比數列.(1)求數列的通項公式及其前n項和;(2)記,求數列的前n項和.20.(12分)已知是函數的一個極值點.(1)求實數的值;(2)求函數在區(qū)間上的最大值和最小值.21.(12分)若雙曲線-=1(a>0,b>0)的焦點坐標分別為和,且該雙曲線經過點P(3,1)(1)求雙曲線的方程;(2)若F是雙曲線的右焦點,Q是雙曲線上的一點,過點F,Q的直線l與y軸交于點M,且,求直線l的斜率22.(10分)如圖,在四棱錐中,平面平面,,,,,(Ⅰ)求證:;(Ⅱ)求二面角的余弦值;(Ⅲ)若點在棱上,且平面,求線段的長
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】討論焦點的位置利用橢圓定義可得答案.【詳解】若,則由得(舍去);若,則由得故選:B.2、A【解析】求出圓心和半徑,由題意可得圓心到直線的距離,列方程即可求得的值.【詳解】由圓可得圓心,半徑,因為圓上有三個點到直線的距離等于1,所以圓心到直線的距離,可得:,故選:A.3、B【解析】根據可判斷兩平面垂直.【詳解】因為,所以,所以,垂直.故選:B.4、C【解析】先聯(lián)立方程得,再求得直線的點關于直線對稱點的坐標為,進而根據題意得所求直線過點,,進而得直線方程.【詳解】解:聯(lián)立方程得,即直線與直線的交點為設直線的點關于直線對稱點的坐標為,所以,解得所以直線關于直線對稱的直線過點,所以所求直線方程的斜率為,所以所求直線的方程為,即故選:C5、C【解析】由圖示求出直線方程,然后求出,,即可求解.【詳解】由直線經過,,可求出直線方程為:∵在處的切線∴,∴故選:C【點睛】用導數求切線方程常見類型:(1)在出的切線:為切點,直接寫出切線方程:;(2)過出的切線:不是切點,先設切點,聯(lián)立方程組,求出切點坐標,再寫出切線方程:.6、D【解析】依題意,不妨設點A的坐標為,在中,由余弦定理得,再根據離心率公式計算即可.【詳解】設橢圓的焦距為,則橢圓的左焦點的坐標為,右焦點的坐標為,依題意,不妨設點A的坐標為,在中,由余弦定理得:,,,,解得.故選:D.【點睛】本題考查橢圓幾何性質,在中,利用余弦定理求得是關鍵,屬于中檔題.7、A【解析】根據雙曲線的方程以及充分條件和必要條件的定義進行判斷即可【詳解】由,可知方程表示焦點在軸上的雙曲線;反之,若表示雙曲線,則,即,或,所以“,”是“方程表示雙曲線”的充分不必要條件故選:A8、C【解析】∵且,∴∴選C9、D【解析】根據橢圓定義求解【詳解】由橢圓定義得△的周長是,故選:D.10、D【解析】若方程表示焦點在軸上的橢圓,則,解得,,故方程表示焦點在軸上的橢圓的概率是,故選D.11、C【解析】設出雙曲線方程,根據題意,求得,即可選擇.【詳解】因為雙曲線的一個焦點是,故可設雙曲線方程為,且;又為一個頂點,故可得,解得,則雙曲線方程為:.故選:.12、D【解析】分別令代入已知關系式,再兩式求和即可求解.【詳解】根據,令時,整理得:令x=2時,整理得:由①+②得,,所以.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、對任何x∈R,都有x2+2x+5≠0【解析】因為命題“存在x∈R,使得x2+2x+5=0”是特稱命題,根據特稱命題的否定是全稱命題,可得命題的否定為:對任何x∈R,都有x2+2x+5≠0故答案為對任何x∈R,都有x2+2x+5≠014、2n+1【解析】由計算,再計算可得結論【詳解】由題意時,,又適合上式,所以故答案為:【點睛】本題考查由求通項公式,解題根據是,但要注意此式不含,15、①.②.【解析】根據個小矩形面積之和為1即可求出的值;根據頻率分布直方圖可以求出車速低于限速60km/h的頻率,從而可求出汽車有多少輛【詳解】由解得:這300輛汽車中車速低于限速60km/h的汽車有故答案為:;16、±8【解析】解析由G2=4×16=64得G=±8.答案±8三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)列聯(lián)表答案見解析;(2);(3)沒有的把握認為“是否了解數字人民幣”與“學歷高低”有關.【解析】(1)根據給定表中數據列出列聯(lián)表作答.(2)利用給定條件結合古典概率公式計算作答.(3)利用(1)中信息求出的觀測值,再與臨界值表比對作答.【小問1詳解】列聯(lián)表如下:低學歷高學歷合計不了解數字人民幣150125275了解數字人民幣250275525合計400400800【小問2詳解】由(1)知,被調查者中低學歷的有400,其中不了解數字人民幣的有150,從400人中任取2人有個基本事件,它們等可能,被選中的2人中至少有1人對數字人民幣不了解的事件A有個基本事件,所以被選中的2人中至少有1人對數字人民幣不了解的概率.【小問3詳解】由(1)知,的觀測值為,所以沒有的把握認為“是否了解數字人民幣”與“學歷高低”有關.18、(1);(2)證明見解析.【解析】(1)由點在拋物線上可得出,再利用三角形的面積公式可得出關于的等式,解出正數的值,即可得出拋物線的標準方程;(2)設點、,利用斜率公式結合已知條件可得出的值,分析可知直線不與軸垂直,可設直線的方程為,將該直線方程與拋物線的方程聯(lián)立,利用韋達定理求出的值,即可得出結論.【小問1詳解】解:拋物線的焦點為,由已知可得,則,,,解得,因此,拋物線的方程為.【小問2詳解】證明:設點、,則,可得.若直線軸,則該直線與拋物線只有一個交點,不合乎題意.設直線的方程為,聯(lián)立,可得,由韋達定理可得,可得,此時,合乎題意.所以,直線的方程為,故直線恒過定點.19、(1),(2)【解析】(1)根據分式的合分比性質以及等差數列的性質即可求出;(2)根據裂項相消法即可求出【小問1詳解】由題意:,即,又∵,∴,∴,∴,.【小問2詳解】因為,∴.20、(1)3(2),【解析】(1)先求出函數的導數,根據極值點可得導數的零點,從而可求實數的值;(2)由(1)可得函數的單調性,從而可求最值.【小問1詳解】,是的一個極值點,.,,此時,令,解劇或,令,解得,故為的極值點,故.【小問2詳解】由(1)可得在上單調遞增,在上單調遞減,故在上為增函數,在上為減函數,.又21、(1)(2)【解析】(1)根據題意列方程組求解(2)待定系數法設直線后,由條件求出坐標后代入雙曲線方程求解【小問1詳解】,解得,故雙曲線方程為【小問2詳解】,故設直線方程為則,由得:故,點在雙曲線上,則,解得直線l的斜率為22、(Ⅰ)見解析.(Ⅱ).(Ⅲ).【解析】第一問根據面面垂直的性質和線面垂直的性質得出線線垂直的結論,注意在書寫的時候條件不要丟就行;第二問建立空間直角坐標系,利用法向量所成角的余弦值來求得二面角的余弦值;第三問利用向量共線的關系,得出向
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)保醫(yī)師協(xié)議管理辦法
- 公園日常運營管理辦法
- 公司創(chuàng)新管理辦法試行
- 原材料質量復查與檢測計劃
- 河南展會活動管理辦法
- 案例分析:校本行為干預:有效解決之道
- 旅游行業(yè)創(chuàng)新與節(jié)日營銷策略
- 安全隱患排查指南
- 內河游艇培訓管理辦法
- 江蘇灘涂用地管理辦法
- 檢驗科管理手冊
- 行車安全風險點告知牌
- 2019-2020鞍山八年第二學期語文期末考試帶答案
- 心臟粘液瘤超聲診斷
- 國家開放大學電大2022年春季期末考試《商務英語閱讀》試題試卷代號4050
- 2023年音樂考試真題
- NB/T 10751-2021礦用往復式氣動注漿泵
- 裝卸搬運課件
- GB/T 18391.2-2009信息技術元數據注冊系統(tǒng)(MDR)第2部分:分類
- GB/T 16924-2008鋼件的淬火與回火
- 基礎護理學:肌內注射
評論
0/150
提交評論