北京市石景山區(qū)第九中學(xué)2024屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
北京市石景山區(qū)第九中學(xué)2024屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
北京市石景山區(qū)第九中學(xué)2024屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
北京市石景山區(qū)第九中學(xué)2024屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
北京市石景山區(qū)第九中學(xué)2024屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

北京市石景山區(qū)第九中學(xué)2024屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若等比數(shù)列的前n項和,則r的值為()A. B.C. D.2.把直線繞原點逆時針轉(zhuǎn)動,使它與圓相切,則直線轉(zhuǎn)動的最小正角度A. B.C. D.3.把紅、黑、藍、白4張紙牌隨機地分發(fā)給甲、乙、丙、丁4人,每人分得1張,事件“甲分得紅牌”與事件“乙分得紅牌”的關(guān)系是()A.既不互斥也不對立 B.互斥又對立C.互斥但不對立 D.對立4.雙曲線的焦點到漸近線的距離為()A.1 B.2C. D.5.如圖所示,已知是橢圓的左、右焦點,為橢圓的上頂點,在軸上,,且是的中點,為坐標(biāo)原點,若點到直線的距離為3,則橢圓的方程為()A B.C. D.6.已知雙曲線的兩個焦點為,,是此雙曲線上的一點,且滿足,,則該雙曲線的方程是()A. B.C. D.7.在平面直角坐標(biāo)系中,雙曲線C:的左焦點為F,過F且與x軸垂直的直線與C交于A,B兩點,若是正三角形,則C的離心率為()A. B.C. D.8.已知x>0、y>0,且1,若恒成立,則實數(shù)m的取值范圍為()A.(1,9) B.(9,1)C.[9,1] D.(∞,1)∪(9,+∞)9.函數(shù),則的值為()A B.C. D.10.已知過點A(a,0)作曲線C:y=x?ex的切線有且僅有兩條,則實數(shù)a的取值范圍是()A.(﹣∞,﹣4)∪(0,+∞) B.(0,+∞)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)11.已知橢圓與橢圓,則下列結(jié)論正確的是()A.長軸長相等 B.短軸長相等C.焦距相等 D.離心率相等12.為發(fā)揮我市“示范性高中”的輻射帶動作用,促進教育的均衡發(fā)展,共享優(yōu)質(zhì)教育資源.現(xiàn)分派我市“示范性高中”的5名教師到,,三所薄弱學(xué)校支教,開展送教下鄉(xiāng)活動,每所學(xué)校至少分派一人,其中教師甲不能到學(xué)校,則不同分派方案的種數(shù)是()A.150 B.136C.124 D.100二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的一條漸近線的一個方向向量為,則______(寫出一個即可)14.已知雙曲線,(,)的左右焦點分別為,過的直線與圓相切,與雙曲線在第四象限交于一點,且有軸,則直線的斜率是___________,雙曲線的漸近線方程為___________.15.“學(xué)習(xí)強國”學(xué)習(xí)平臺是由中宣部主管,以深入學(xué)習(xí)宣傳新時代中國特色社會主義思想為主要內(nèi)容,立足全體黨員,面向全社會的優(yōu)質(zhì)平臺,現(xiàn)日益成為老百姓了解國家動態(tài),緊跟時代脈搏的熱門APP,某市宣傳部門為了解全民利用“學(xué)習(xí)強國”了解國家動態(tài)的情況,從全市抽取2000名人員進行調(diào)查,統(tǒng)計他們每周利用“學(xué)習(xí)強國”的時長,下圖是根據(jù)調(diào)查結(jié)果繪制的頻率分布直方圖(1)根據(jù)上圖,求所有被抽查人員利用“學(xué)習(xí)強國”的平均時長和中位數(shù);(2)宣傳部為了了解大家利用“學(xué)習(xí)強國”的具體情況,準(zhǔn)備采用分層抽樣的方法從和組中抽取50人了解情況,則兩組各抽取多少人?再利用分層抽樣從抽取的50入中選5人參加一個座談會,現(xiàn)從參加座談會的5人中隨機抽取兩人發(fā)言,求小組中至少有1人發(fā)言的概率?16.已知點,則線段的垂直平分線的一般式方程為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,是邊長為2的正三角形,底面為菱形,且平面平面,,為上一點,滿足.(1)證明:;(2)求二面角的余弦值.18.(12分)如圖,四棱錐的底面是正方形,平面平面,E為的中點(1)若,證明:;(2)求直線與平面所成角的余弦值的取值范圍19.(12分)已知等比數(shù)列{}的各項均為正數(shù),,,成等差數(shù)列,,數(shù)列{}的前n項和,且.(1)求{}和{}的通項公式;(2)設(shè),記數(shù)列{}的前n項和為.求證:.20.(12分)已知是等差數(shù)列的前n項和,且,(1)求數(shù)列的通項公式;(2)令,求數(shù)列的前n項和21.(12分)已知直線l過定點(1)若直線l與直線垂直,求直線l的方程;(2)若直線l在兩坐標(biāo)軸上的截距相等,求直線l的方程22.(10分)已知函數(shù).(1)討論的單調(diào)性;(2)當(dāng)時,求函數(shù)在內(nèi)的零點個數(shù).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用成等比數(shù)列來求得.【詳解】依題意,等比數(shù)列的前n項和,,,所以.故選:B2、B【解析】根據(jù)直線過原點且與圓相切,求出直線的斜率,再數(shù)形結(jié)合計算最小旋轉(zhuǎn)角【詳解】解析:由題意,設(shè)切線為,∴.∴或.∴時轉(zhuǎn)動最小∴最小正角為.故選B.【點睛】本題考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題3、C【解析】根據(jù)互斥事件、對立事件的定義可得答案.【詳解】把紅、黑、藍、白4張紙牌隨機地分發(fā)給甲、乙、丙、丁4人,每人分得1張,事件“甲分得紅牌”與事件“乙分得紅牌”不能同時發(fā)生,但能同時不發(fā)生,所以它們的關(guān)系是互斥但不對立.故選:C.4、A【解析】分別求出雙曲線的焦點坐標(biāo)和漸近線方程,利用點到直線的距離公式求出結(jié)果【詳解】雙曲線中,焦點坐標(biāo)為漸近線方程為:∴雙曲線的焦點到漸近線的距離故選:A5、D【解析】由題設(shè)可得,直線的方程為,點線距離公式表示到直線的距離,又聯(lián)立解得即可得出答案.【詳解】且,則△是等邊三角形,設(shè),則①,∴直線方程為,即,∴到直線的距離為②,又③,聯(lián)立①②③,解得,,故橢圓方程為.故選:D.6、A【解析】由,可得進一步求出,由此得到,則該雙曲線的方程可求【詳解】,即,則.即,則該雙曲線的方程是:故選:A【點睛】方法點睛:求圓錐曲線的方程,常用待定系數(shù)法,先定式(根據(jù)已知確定焦點所在的坐標(biāo)軸,設(shè)出曲線的方程),再定式(根據(jù)已知建立方程組解方程組得解).7、A【解析】設(shè)雙曲線半焦距為c,求出,由給定的正三角形建立等量關(guān)系,結(jié)合計算作答.【詳解】設(shè)雙曲線半焦距為c,則,而軸,由得,從而有,而是正三角形,即有,則,整理得,因此有,而,解得,所以C的離心率為.故選:A8、B【解析】應(yīng)用基本不等式“1”的代換求的最小值,注意等號成立條件,再根據(jù)題設(shè)不等式恒成立有,解一元二次不等式求解集即可.【詳解】由題設(shè),,當(dāng)且僅當(dāng)時等號成立,∴要使恒成立,只需,故,∴.故選:B.9、B【解析】求出函數(shù)的導(dǎo)數(shù),代入求值即可.【詳解】函數(shù),故,所以,故選:B10、A【解析】設(shè)出切點,對函數(shù)求導(dǎo)得到切點處的斜率,由點斜式得到切線方程,化簡為,整理得到方程有兩個解即可,解出不等式即可.【詳解】設(shè)切點為,,,則切線方程為:,切線過點代入得:,,即方程有兩個解,則有或.故答案為:A.【點睛】這個題目考查了函數(shù)的導(dǎo)函數(shù)的求法,以及過某一點的切線方程的求法,其中應(yīng)用到導(dǎo)數(shù)的幾何意義,一般過某一點求切線方程的步驟為:一:設(shè)切點,求導(dǎo)并且表示在切點處的斜率;二:根據(jù)點斜式寫切點處的切線方程;三:將所過的點代入切線方程,求出切點坐標(biāo);四:將切點代入切線方程,得到具體的表達式.11、C【解析】利用,可得且,即可得出結(jié)論【詳解】∵,且,橢圓與橢圓的關(guān)系是有相等的焦距故選:C12、D【解析】對甲所在組的人數(shù)分類討論即得解.【詳解】當(dāng)甲一個人去一個學(xué)校時,有種;當(dāng)甲所在的學(xué)校有兩個老師時,有種;當(dāng)甲所在的學(xué)校有三個老師時,有種;所以共有28+48+24=100種.故選:D【點睛】方法點睛:排列組合常用方法有:簡單問題直接法、小數(shù)問題列舉法、相鄰問題捆綁法、不相鄰問題插空法、至少問題間接法、復(fù)雜問題分類法、等概率問題縮倍法.要根據(jù)已知條件靈活選擇方法求解.二、填空題:本題共4小題,每小題5分,共20分。13、(答案不唯一)【解析】寫出雙曲線的漸近線方程,結(jié)合方向向量的定義求即可.【詳解】由題設(shè),雙曲線的漸近線方程為,又是一條漸近線的一個方向向量,所以或或或,所以或.故答案為:(答案不唯一)14、①.②.【解析】由題意,不妨設(shè)直線與圓相切于點,由可得,代入雙曲線方程,可得,因此,即得解【詳解】如圖所示,不妨設(shè)直線與圓相切于點,,由于代入進入,可得,漸近線方程為故答案為:,15、(1)平均時長為,中位數(shù)為(2)在和兩組中分別抽取30人和20人,概率【解析】(1)由頻率分布直方圖計算平均數(shù),中位數(shù)的公式即可求解;(2)先根據(jù)分層抽樣求出每一組抽取的人數(shù),再列舉抽取總事件個數(shù),從而利用古典概型概率計算公式即可求解【小問1詳解】解:(1)設(shè)被抽查人員利用“學(xué)習(xí)強國”的平均時長為,中位數(shù)為,,被抽查人員利用“學(xué)習(xí)強國”的時長中位數(shù)滿足,解得,即抽查人員利用“學(xué)習(xí)強國”的平均時長為6.8,中位數(shù)為【小問2詳解】解:組的人數(shù)為人,設(shè)抽取的人數(shù)為,組的人數(shù)為人,設(shè)抽取的人數(shù)為,則,解得,,所以在和兩組中分別抽取30人和20人,再利用分層抽樣從抽取的50入中抽取5人,兩組分別抽取3人和2人,將組中被抽取的工作人員標(biāo)記為,,,將中的標(biāo)記為,,則抽取的情況如下:,,,,,,,,,,,,,,,,,,,共10種情況,其中在中至少抽取1人有7種,故所求概率16、【解析】由中點坐標(biāo)公式和斜率公式可得的中點和直線斜率,由垂直關(guān)系可得垂直平分線的斜率,由點斜式可得直線方程,化為一般式即可【詳解】由中點坐標(biāo)公式可得,的中點為,可得直線的斜率為,由垂直關(guān)系可得其垂直平分線的斜率為,故可得所求直線的方程為:,化為一般式可得故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)設(shè)為中點,連接,根據(jù),證明平面得到答案.(2)以為原點,,,分別為,,軸建立空間直角坐標(biāo)系,計算各點坐標(biāo),計算平面和平面的法向量,根據(jù)向量夾角公式計算得到答案.【詳解】(1)設(shè)為中點,連接,,∵,∴,又∵底面四邊形為菱形,,∴為等邊三角形,∴,又∴,,平面,∴平面,而平面,∴.(2)∵平面平面,平面平面,,∴平面以為原點,,,分別為,,軸建立空間直角坐標(biāo)系,則,,,,,,由,,,即,∴,,,設(shè)為平面的法向量,則由,令,得,,∴,設(shè)為平面的法向量,則由,令,得,,∴,設(shè)二面角的平面角為,則,∴二面角的的余弦值為.【點睛】本題考查了線線垂直,二面角,意在考查學(xué)生的計算能力和空間想象能力,建立空間直角坐標(biāo)系是解題的關(guān)鍵.18、(1)證明見解析;(2).【解析】(1)取的中點F,連接.先證明,,即證平面,原題即得證;(2)分別取的中點G,H,連接,證明為直線與平面所成的角,設(shè)正方形的邊長為1,,在中,,即得解.【小問1詳解】解:取的中點F,連接因為,則為正三角形,所以因為平面平面,則平面因為平面,則.①因為四邊形為正方形,E為的中點,則,所以,從而,所以.②又平面,結(jié)合①②知,平面,所以【小問2詳解】解:分別取的中點G,H,則,又,,則,所以四邊形為平行四邊形,從而.因為,則因為平面平面,,則平面,從而,因為平面,所以平面,從而平面連接,則為直線與平面所成的角.設(shè)正方形的邊長為1,,則從而,.在中,因為當(dāng)時,單調(diào)遞增,則,所以直線與平面所成角的余弦值的取值范圍是.19、(1)(2)證明見解析【解析】設(shè)等比數(shù)列的公比為,由,,成等差數(shù)列,解得.由,利用通項公式解得,可得.由數(shù)列的前項和,且,時,,化簡整理即可得出;(2),利用裂項求和方法、數(shù)列的單調(diào)性即可證明結(jié)論【小問1詳解】設(shè)等比數(shù)列的公比為,,,成等差數(shù)列,,即,化為:,解得,,即,解得,數(shù)列的前項和,且,時,,化為:,,數(shù)列是每項都為1的常數(shù)列,,化為【小問2詳解】證明:,數(shù)列的前項和為,20、(1)(2)【解析】(1)設(shè)等差數(shù)列的首項、公差,由列出關(guān)于首項、公差的方程組,解方程組可得與的值,從而可得數(shù)列的通項公式;(2)由(1)可知,利用裂項相消法可求數(shù)列的前n項和.小問1詳解】依題意:設(shè)等差數(shù)列的首項為,公差為,則解得所以數(shù)列的通項公式為【小問2詳解】由(1)可知因為,所以,所以.21、(1)(2)或【解析】(1)求出直線的斜率可得l的斜率,再借助直線點斜式方程即可得解.(2)按直線l是否過原點分類討論計算作答.【小問1詳解】直線的斜率為,于是得直線l的斜率,則,即,所以直線l的方程是:.【小問2詳解】因直線l在兩坐標(biāo)軸上的截距相等,則當(dāng)直線l過原點時,直線l的方程為:,即,當(dāng)直線l不過原點時,設(shè)其方程為:,則有,解得,此時,直線l的方程為:,所以直線l的方程為:或.22、(1)當(dāng),在單調(diào)遞增;當(dāng),在單調(diào)遞增,在單調(diào)遞減.(2)0.【解析】(1)求得,對參數(shù)分類討論,即可由每種情況下的正負確定函數(shù)的單調(diào)性;(2)根據(jù)題意求得,利用進行放縮,只需證即,再利用導(dǎo)數(shù)通過證明從而得到恒成立,則問題得解.【小問1詳解】以為,其定義域為,又,故當(dāng)時,,在單調(diào)遞增;當(dāng)時,令,可得,且令,解得,令,解得,故在單調(diào)遞增,在單調(diào)遞減.綜上

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論