




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
北京市石景山區(qū)第九中學(xué)2024屆高二數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數(shù)滿足,且,則A. B.2 C.4 D.82.已知,則的最小值為()A. B. C. D.3.已知.則()A. B. C. D.4.下列關(guān)于積分的結(jié)論中不正確的是()A. B.C.若在區(qū)間上恒正,則 D.若,則在區(qū)間上恒正5.古印度“漢諾塔問題”:一塊黃銅平板上裝著A,B,C三根金銅石細(xì)柱,其中細(xì)柱A上套著個大小不等的環(huán)形金盤,大的在下、小的在上.將這些盤子全部轉(zhuǎn)移到另一根柱子上,移動規(guī)則如下:一次只能將一個金盤從一根柱子轉(zhuǎn)移到另外一根柱子上,不允許將較大盤子放在較小盤子上面.若A柱上現(xiàn)有3個金盤(如圖),將A柱上的金盤全部移到B柱上,至少需要移動次數(shù)為()A.5 B.7 C.9 D.116.變量X與Y相對應(yīng)的一組數(shù)據(jù)為(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);變量U與V相對應(yīng)的一組數(shù)據(jù)為(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示變量Y與X之間的線性相關(guān)系數(shù),r2表示變量V與U之間的線性相關(guān)系數(shù),則A.r2<r1<0 B.r2<0<r1 C.0<r2<r1 D.r2=r17.函數(shù)的圖象是()A. B.C. D.8.若滿足,則的最大值為()A.8 B.7 C.2 D.19.已知與之間的一組數(shù)據(jù),則與的線性回歸方程必過點()A. B. C. D.10.某校團(tuán)委對“學(xué)生性別與中學(xué)生追星是否有關(guān)”作了一次調(diào)查,利用列聯(lián)表,由計算得,參照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正確結(jié)論是()A.有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星無關(guān)”B.有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”C.在犯錯誤的概率不超過0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星無關(guān)”D.在犯錯誤的概率不超過0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”11.已知i為虛數(shù)單位,復(fù)數(shù)z滿足(1-i)·z=2i,是復(fù)數(shù)z的共軛復(fù)數(shù),則下列關(guān)于復(fù)數(shù)z的說法正確的是()A.z=1-i B.C. D.復(fù)數(shù)z在復(fù)平面內(nèi)表示的點在第四象限12.若角的終邊上有一點,則的值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若曲線在點處的切線方程為,則的值為________.14.復(fù)數(shù)(是虛數(shù)單位)的虛部是______.15.已知點在橢圓上,垂直于橢圓焦點所在的直線,垂足為,并且為線段的中點,則點的軌跡方程是_____.16.已知函數(shù)在處切線方程為,若對恒成立,則_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知sinα=-817且π<α<3π2,求sin18.(12分)設(shè)實部為正數(shù)的復(fù)數(shù)z,滿足|z|=,且復(fù)數(shù)(1+3i)z在復(fù)平面內(nèi)對應(yīng)的點在第一、三象限的角平分線上.(I)求復(fù)數(shù)z(II)若復(fù)數(shù)+m2(1+i)-2i十2m-5為純虛數(shù),求實數(shù)m的值.19.(12分)已知.(Ⅰ)討論的單調(diào)性;(Ⅱ)當(dāng)時,證明對于任意的成立.20.(12分)已知,.(1)證明:.(2)證明:.21.(12分)已知函數(shù),(其中,且),(1)若,求實數(shù)的值;(2)能否從(1)的結(jié)論中獲得啟示,猜想出一個一般性的結(jié)論并證明你的猜想.22.(10分)被嘉定著名學(xué)者錢大昕贊譽為“國朝算學(xué)第一”的清朝數(shù)學(xué)家梅文鼎曾創(chuàng)造出一類“方燈體”,“燈者立方去其八角也”,如圖所示,在棱長為的正方體中,點為棱上的四等分點.(1)求該方燈體的體積;(2)求直線和的所成角;(3)求直線和平面的所成角.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】
由,可得,從而得,解出的值即可得結(jié)果.【題目詳解】實數(shù)滿足,故,又由得:,解得:,或舍去,故,,故選D.【題目點撥】本題考查的知識點是指數(shù)的運算與對數(shù)的運算,意在考查靈活應(yīng)用所學(xué)知識解答問題的能力,屬于中檔題.2、C【解題分析】試題分析:由題意得,,所以,當(dāng)時,的最小值為,故選C.考點:向量的運算及模的概念.3、C【解題分析】
由二項式定理及利用賦值法即令和,兩式相加可得,結(jié)合最高次系數(shù)的值即可得結(jié)果.【題目詳解】中,取,得,取,得,所以,即,又,則,故選C.【題目點撥】本題主要考查了二項式定理及利用賦值法求二項式展開式的系數(shù),屬于中檔題.4、D【解題分析】
結(jié)合定積分知識,對選項逐個分析可選出答案.【題目詳解】對于選項A,因為函數(shù)是R上的奇函數(shù),所以正確;對于選項B,因為函數(shù)是R上的偶函數(shù),所以正確;對于選項C,因為在區(qū)間上恒正,所以圖象都在軸上方,故正確;對于選項D,若,可知的圖象在區(qū)間上,在軸上方的面積大于下方的面積,故選項D不正確.故選D.【題目點撥】本題考查了定積分,考查了函數(shù)的性質(zhì),屬于基礎(chǔ)題.5、B【解題分析】
設(shè)細(xì)柱A上套著n個大小不等的環(huán)形金盤,至少需要移動次數(shù)記為an,則a【題目詳解】設(shè)細(xì)柱A上套著n個大小不等的環(huán)形金盤,至少需要移動次數(shù)記為an要把最下面的第n個金盤移到另一個柱子上,則必須把上面的n-1個金盤移到余下的一個柱子上,故至少需要移動an-1把第n個金盤移到另一個柱子上后,再把n-1個金盤移到該柱子上,故又至少移動an-1次,所以aa1=1,故a2【題目點撥】本題考查數(shù)列的應(yīng)用,要求根據(jù)問題情境構(gòu)建數(shù)列的遞推關(guān)系,從而解決與數(shù)列有關(guān)的數(shù)學(xué)問題.6、B【解題分析】
分析:求兩組數(shù)據(jù)的相關(guān)系數(shù)的大小和正負(fù),可以詳細(xì)的解出這兩組數(shù)據(jù)的相關(guān)系數(shù),現(xiàn)分別求出兩組數(shù)據(jù)的兩個變量的平均數(shù),利用相關(guān)系數(shù)的個數(shù)代入求出結(jié)果,進(jìn)行比較.詳解:變量X與Y相對應(yīng)的一組數(shù)據(jù)為(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),可得:變量Y與X之間成正相關(guān),因此;變量U與V相對應(yīng)的一組數(shù)據(jù)為(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),可得:變量V與U之間成負(fù)相關(guān),因此第一組數(shù)據(jù)的系數(shù)大于0,第二組數(shù)據(jù)的相關(guān)系數(shù)小于0.故選B.點睛:本題考查了變量之間的線性相關(guān)系數(shù),考查了推理能力.7、A【解題分析】
根據(jù)已知中函數(shù)的解析式,利用導(dǎo)數(shù)法分析出函數(shù)的單調(diào)性及極值,比照四個答案函數(shù)的圖象,可得答案.【題目詳解】∵,∴,令得;當(dāng)時,,即函數(shù)在內(nèi)單調(diào)遞減,可排除B,D;又時,,排除C,故選A.【題目點撥】本題考查的知識點是函數(shù)的圖象,分析出函數(shù)的單調(diào)性是解答的關(guān)鍵,屬于中檔題.8、B【解題分析】試題分析:作出題設(shè)約束條件可行域,如圖內(nèi)部(含邊界),作直線,把直線向上平移,增加,當(dāng)過點時,為最大值.故選B.考點:簡單的線性規(guī)劃問題.9、C【解題分析】
計算出和,即可得出回歸直線必過的點的坐標(biāo).【題目詳解】由題意可得,,因此,回歸直線必過點,故選:C.【題目點撥】本題考查回歸直線必過的點的坐標(biāo),解題時要熟悉“回歸直線過樣本中心點”這一結(jié)論的應(yīng)用,考查結(jié)論的應(yīng)用,屬于基礎(chǔ)題.10、B【解題分析】
通過與表中的數(shù)據(jù)6.635的比較,可以得出正確的選項.【題目詳解】解:,可得有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”,故選B.【題目點撥】本題考查了獨立性檢驗的應(yīng)用問題,屬于基礎(chǔ)題.11、C【解題分析】
把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運算化簡求出z,然后逐一核對四個選項得答案.【題目詳解】復(fù)數(shù)在復(fù)平面內(nèi)表示的點在第二象限,故選C.【題目點撥】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.12、A【解題分析】
由題意利用任意角的三角函數(shù)的定義,求出的值.【題目詳解】解:若角的終邊上有一點,則
,
∴.
故選:A.【題目點撥】本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解題分析】試題分析:,又在點處的切線方程是,.考點:三角函數(shù)化簡求值.14、【解題分析】
分子和分母同時乘以分母的共軛復(fù)數(shù),化簡復(fù)數(shù),即可求得虛部.【題目詳解】復(fù)數(shù)的虛部是:.故答案為:.【題目點撥】本題主要考查了復(fù)數(shù)的四則運算,以及復(fù)數(shù)的基本概念的應(yīng)用,其中解答中熟練應(yīng)用復(fù)數(shù)的運算法則化簡是解答的關(guān)鍵,屬于基礎(chǔ)題.15、【解題分析】設(shè)P(x,y),則M(x,).∵點M在橢圓上,∴,即P點的軌跡方程為x2+y2=1.故填.16、【解題分析】
先求出切線方程,則可得到,令,從而轉(zhuǎn)化為在R上恒為增函數(shù),利用導(dǎo)函數(shù)研究單調(diào)性即可得到答案.【題目詳解】根據(jù)題意得,故切線方程為,即,令,此時,由于對恒成立,轉(zhuǎn)化為,則在R上恒為增函數(shù),,此時,而,當(dāng)時,,當(dāng)時,,于是在處取得極小值,此時,而在R上恒為增函數(shù)等價于在R上恒成立,即即可,由于為極小值,則此時只能,故答案為2.【題目點撥】本題主要考查導(dǎo)函數(shù)的幾何意義,利用導(dǎo)函數(shù)求函數(shù)極值,意在考查學(xué)生的分析能力,轉(zhuǎn)化能力,計算能力,難度思維較大.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、sinα2=417【解題分析】
先利用同角三角函數(shù)的基本關(guān)系計算出cosα的值,并計算出α2的取值范圍,然后利用半角公式計算出sinα2和cos【題目詳解】∵sinα=-817,又π2<αcosα2=-【題目點撥】本題考查利用半角公式求值,同時也考查了利用同角三角函數(shù)的基本關(guān)系,在利用同角三角函數(shù)的基本關(guān)系時,要考查角的范圍,確定所求三角函數(shù)值的符號,再結(jié)合相關(guān)公式進(jìn)行計算,考查運算求解能力,屬于中等題.18、(1).(2)【解題分析】
分析:(1)設(shè),先根據(jù)復(fù)數(shù)乘法得,再根據(jù)復(fù)數(shù)的模得解方程組可得,(2)先化成復(fù)數(shù)代數(shù)形式,再根據(jù)純虛數(shù)概念列方程組,解得實數(shù)m的值.詳解:(1)設(shè),由,得又復(fù)數(shù)=在復(fù)平面內(nèi)對應(yīng)的點在第一、三象限的角平分線上.則,即又,所以,則(2)=為純虛數(shù),所以可得點睛:本題重點考查復(fù)數(shù)的基本運算和復(fù)數(shù)的概念,屬于基本題.首先對于復(fù)數(shù)的四則運算,要切實掌握其運算技巧和常規(guī)思路,如.其次要熟悉復(fù)數(shù)相關(guān)基本概念,如復(fù)數(shù)的實部為、虛部為、模為、對應(yīng)點為、共軛為19、(Ⅰ)見解析;(Ⅱ)見解析【解題分析】試題分析:(Ⅰ)求的導(dǎo)函數(shù),對a進(jìn)行分類討論,求的單調(diào)性;(Ⅱ)要證對于任意的成立,即證,根據(jù)單調(diào)性求解.試題解析:(Ⅰ)的定義域為;.當(dāng),時,,單調(diào)遞增;,單調(diào)遞減.當(dāng)時,.(1),,當(dāng)或時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減;(2)時,,在內(nèi),,單調(diào)遞增;(3)時,,當(dāng)或時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減.綜上所述,當(dāng)時,函數(shù)在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減;當(dāng)時,在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增;當(dāng)時,在內(nèi)單調(diào)遞增;當(dāng),在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.(Ⅱ)由(Ⅰ)知,時,,,令,.則,由可得,當(dāng)且僅當(dāng)時取得等號.又,設(shè),則在單調(diào)遞減,因為,所以在上存在使得時,時,,所以函數(shù)在上單調(diào)遞增;在上單調(diào)遞減,由于,因此,當(dāng)且僅當(dāng)取得等號,所以,即對于任意的恒成立?!究键c】利用導(dǎo)函數(shù)判斷函數(shù)的單調(diào)性,分類討論思想.【名師點睛】本題主要考查導(dǎo)數(shù)的計算、應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、分類討論思想.本題覆蓋面廣,對考生計算能力要求較高,是一道難題.解答本題,準(zhǔn)確求導(dǎo)數(shù)是基礎(chǔ),恰當(dāng)分類討論是關(guān)鍵,易錯點是分類討論不全面、不徹底、不恰當(dāng),或因復(fù)雜式子變形能力差,而錯誤百出.本題能較好地考查考生的邏輯思維能力、基本計算能力、分類討論思想等.20、(1)見解析(2)見解析【解題分析】
(1)不等式左右都大于0,兩邊同時平方,整理即要證明,再平方,且,,即得證;(2)證明即可,提公因式整理得證?!绢}目詳解】證明:(1)欲證明,只需證明,即證,兩邊平方,得,因為,所以顯然成立,得證.(2)因為,所以.【題目點撥】本題考查證明不等式,(1)用兩邊同時平方的方法,(2)用做差法來證明,注意(1)可以平方的條件是不等式兩邊都大于零。21、(1)(2)猜想:;證明見解析【解題分析】
(1)分別代入并化簡,可得,即可求出答案;(2)猜想:;分別代入表達(dá)式,化簡并整理即可證明.【題目詳解】解:(1).因為函數(shù)與具有相同的單調(diào)性,且都是單調(diào)函數(shù),所以是單調(diào)函數(shù)..(2)由,猜想:.證明:.所以.【題目點撥】本題考查了歸納推理,考查了學(xué)生的推理能力,屬于中檔題.22、(1);(2);(3).【解題分析】
(1)計算出八個角(即八個三棱錐)的體積之和,然后利用正方體的體積減去這八個角的體積之和即可得出方燈體的體積;(2)以為原點,為軸,為軸,為軸,建立空間直角坐標(biāo)系
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國便攜式現(xiàn)場鏜孔機市場調(diào)查研究報告
- 2025年中國互動教學(xué)系統(tǒng)市場調(diào)查研究報告
- 2025年中國不阻塞自吸式離心泵市場調(diào)查研究報告
- 2025年中國丁酸丁酯香精市場調(diào)查研究報告
- 2025年中國PA尼龍棉市場調(diào)查研究報告
- 2025年中國1,4丁二醇二丙烯酸酯市場調(diào)查研究報告
- 2025家居用品委托代購合同
- 胰島素臨床應(yīng)用課件
- 《溫度感應(yīng)式傳感器》課件
- 《頻率法的并聯(lián)校正》課件
- 西安市自來水有限公司招聘筆試沖刺題2025
- 大學(xué)生國家安全教育知到智慧樹章節(jié)測試課后答案2024年秋廣西科技大學(xué)
- 交通出行共享單車管理優(yōu)化策略
- 手術(shù)室外來手術(shù)器械管理
- 員工手冊-沃爾瑪
- 全球視野下商業(yè)長期護(hù)理保險發(fā)展研究報告-中再壽20241214
- 學(xué)校領(lǐng)導(dǎo)班子素質(zhì)培訓(xùn)計劃和措施
- 《礦漿管道施工組織設(shè)計》
- 2024年河北高中學(xué)業(yè)水平合格性考試生物試卷真題(含答案詳解)
- 消防器材使用技能培訓(xùn)
- GB/T 22671-2024外轉(zhuǎn)子電動機試驗方法
評論
0/150
提交評論