上海市青浦高級(jí)中學(xué)2023-2024學(xué)年高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第1頁(yè)
上海市青浦高級(jí)中學(xué)2023-2024學(xué)年高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第2頁(yè)
上海市青浦高級(jí)中學(xué)2023-2024學(xué)年高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第3頁(yè)
上海市青浦高級(jí)中學(xué)2023-2024學(xué)年高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第4頁(yè)
上海市青浦高級(jí)中學(xué)2023-2024學(xué)年高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

上海市青浦高級(jí)中學(xué)2023-2024學(xué)年高考沖刺押題(最后一卷)數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知m,n是兩條不同的直線,,是兩個(gè)不同的平面,給出四個(gè)命題:①若,,,則;②若,,則;③若,,,則;④若,,,則其中正確的是()A.①② B.③④ C.①④ D.②④2.已知i為虛數(shù)單位,則()A. B. C. D.3.函數(shù)的對(duì)稱軸不可能為()A. B. C. D.4.設(shè)是兩條不同的直線,是兩個(gè)不同的平面,則下列命題正確的是()A.若,,則 B.若,,則C.若,,,則 D.若,,,則5.已知等比數(shù)列滿足,,則()A. B. C. D.6.若(1+2ai)i=1-bi,其中a,b∈R,則|a+bi|=().A. B. C. D.57.已知是邊長(zhǎng)為1的等邊三角形,點(diǎn),分別是邊,的中點(diǎn),連接并延長(zhǎng)到點(diǎn),使得,則的值為()A. B. C. D.8.函數(shù),,則“的圖象關(guān)于軸對(duì)稱”是“是奇函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.已知雙曲線的右焦點(diǎn)為為坐標(biāo)原點(diǎn),以為直徑的圓與雙曲線的一條漸近線交于點(diǎn)及點(diǎn),則雙曲線的方程為()A. B. C. D.10.已知點(diǎn)是雙曲線上一點(diǎn),若點(diǎn)到雙曲線的兩條漸近線的距離之積為,則雙曲線的離心率為()A. B. C. D.211.已知是邊長(zhǎng)為的正三角形,若,則A. B.C. D.12.設(shè)i是虛數(shù)單位,若復(fù)數(shù)()是純虛數(shù),則m的值為()A. B. C.1 D.3二、填空題:本題共4小題,每小題5分,共20分。13.(5分)有一道描述有關(guān)等差與等比數(shù)列的問題:有四個(gè)和尚在做法事之前按身高從低到高站成一列,已知前三個(gè)和尚的身高依次成等差數(shù)列,后三個(gè)和尚的身高依次成等比數(shù)列,且前三個(gè)和尚的身高之和為cm,中間兩個(gè)和尚的身高之和為cm,則最高的和尚的身高是____________cm.14.在中,角的平分線交于,,,則面積的最大值為__________.15.如圖,為測(cè)量出高,選擇和另一座山的山頂為測(cè)量觀測(cè)點(diǎn),從點(diǎn)測(cè)得點(diǎn)的仰角,點(diǎn)的仰角以及;從點(diǎn)測(cè)得.已知山高,則山高_(dá)_________.16.過動(dòng)點(diǎn)作圓:的切線,其中為切點(diǎn),若(為坐標(biāo)原點(diǎn)),則的最小值是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)()(1)函數(shù)在點(diǎn)處的切線方程為,求函數(shù)的極值;(2)當(dāng)時(shí),對(duì)于任意,當(dāng)時(shí),不等式恒成立,求出實(shí)數(shù)的取值范圍.18.(12分)已知在ΔABC中,角A,B,C的對(duì)邊分別為a,b,c,且cosB(1)求b的值;(2)若cosB+3sin19.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),為實(shí)數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線與曲線交于,兩點(diǎn),線段的中點(diǎn)為.(1)求線段長(zhǎng)的最小值;(2)求點(diǎn)的軌跡方程.20.(12分)如圖,在多面體中,四邊形是菱形,,,,平面,,,是的中點(diǎn).(Ⅰ)求證:平面平面;(ⅠⅠ)求直線與平面所成的角的正弦值.21.(12分)已知函數(shù).若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對(duì)稱點(diǎn).(1)若a,且a≠0,證明:函數(shù)有局部對(duì)稱點(diǎn);(2)若函數(shù)在定義域內(nèi)有局部對(duì)稱點(diǎn),求實(shí)數(shù)c的取值范圍;(3)若函數(shù)在R上有局部對(duì)稱點(diǎn),求實(shí)數(shù)m的取值范圍.22.(10分)等差數(shù)列中,,,分別是下表第一、二、三行中的某一個(gè)數(shù),且其中的任何兩個(gè)數(shù)不在下表的同一列.第一列第二列第三列第一行582第二行4312第三行1669(1)請(qǐng)選擇一個(gè)可能的組合,并求數(shù)列的通項(xiàng)公式;(2)記(1)中您選擇的的前項(xiàng)和為,判斷是否存在正整數(shù),使得,,成等比數(shù)列,若有,請(qǐng)求出的值;若沒有,請(qǐng)說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

根據(jù)面面垂直的判定定理可判斷①;根據(jù)空間面面平行的判定定理可判斷②;根據(jù)線面平行的判定定理可判斷③;根據(jù)面面垂直的判定定理可判斷④.【詳解】對(duì)于①,若,,,,兩平面相交,但不一定垂直,故①錯(cuò)誤;對(duì)于②,若,,則,故②正確;對(duì)于③,若,,,當(dāng),則與不平行,故③錯(cuò)誤;對(duì)于④,若,,,則,故④正確;故選:D【點(diǎn)睛】本題考查了線面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,屬于基礎(chǔ)題.2、A【解析】

根據(jù)復(fù)數(shù)乘除運(yùn)算法則,即可求解.【詳解】.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)運(yùn)算,屬于基礎(chǔ)題題.3、D【解析】

由條件利用余弦函數(shù)的圖象的對(duì)稱性,得出結(jié)論.【詳解】對(duì)于函數(shù),令,解得,當(dāng)時(shí),函數(shù)的對(duì)稱軸為,,.故選:D.【點(diǎn)睛】本題主要考查余弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.4、C【解析】

根據(jù)空間中直線與平面、平面與平面位置關(guān)系相關(guān)定理依次判斷各個(gè)選項(xiàng)可得結(jié)果.【詳解】對(duì)于,當(dāng)為內(nèi)與垂直的直線時(shí),不滿足,錯(cuò)誤;對(duì)于,設(shè),則當(dāng)為內(nèi)與平行的直線時(shí),,但,錯(cuò)誤;對(duì)于,由,知:,又,,正確;對(duì)于,設(shè),則當(dāng)為內(nèi)與平行的直線時(shí),,錯(cuò)誤.故選:.【點(diǎn)睛】本題考查立體幾何中線面關(guān)系、面面關(guān)系有關(guān)命題的辨析,考查學(xué)生對(duì)于平行與垂直相關(guān)定理的掌握情況,屬于基礎(chǔ)題.5、B【解析】由a1+a3+a5=21得a3+a5+a7=,選B.6、C【解析】試題分析:由已知,-2a+i=1-bi,根據(jù)復(fù)數(shù)相等的充要條件,有a=-,b=-1所以|a+bi|=,選C考點(diǎn):復(fù)數(shù)的代數(shù)運(yùn)算,復(fù)數(shù)相等的充要條件,復(fù)數(shù)的模7、D【解析】

設(shè),,作為一個(gè)基底,表示向量,,,然后再用數(shù)量積公式求解.【詳解】設(shè),,所以,,,所以.故選:D【點(diǎn)睛】本題主要考查平面向量的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.8、B【解析】

根據(jù)函數(shù)奇偶性的性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】設(shè),若函數(shù)是上的奇函數(shù),則,所以,函數(shù)的圖象關(guān)于軸對(duì)稱.所以,“是奇函數(shù)”“的圖象關(guān)于軸對(duì)稱”;若函數(shù)是上的偶函數(shù),則,所以,函數(shù)的圖象關(guān)于軸對(duì)稱.所以,“的圖象關(guān)于軸對(duì)稱”“是奇函數(shù)”.因此,“的圖象關(guān)于軸對(duì)稱”是“是奇函數(shù)”的必要不充分條件.故選:B.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合函數(shù)奇偶性的性質(zhì)判斷是解決本題的關(guān)鍵,考查推理能力,屬于中等題.9、C【解析】

根據(jù)雙曲線方程求出漸近線方程:,再將點(diǎn)代入可得,連接,根據(jù)圓的性質(zhì)可得,從而可求出,再由即可求解.【詳解】由雙曲線,則漸近線方程:,,連接,則,解得,所以,解得.故雙曲線方程為.故選:C【點(diǎn)睛】本題考查了雙曲線的幾何性質(zhì),需掌握雙曲線的漸近線求法,屬于中檔題.10、A【解析】

設(shè)點(diǎn)的坐標(biāo)為,代入橢圓方程可得,然后分別求出點(diǎn)到兩條漸近線的距離,由距離之積為,并結(jié)合,可得到的齊次方程,進(jìn)而可求出離心率的值.【詳解】設(shè)點(diǎn)的坐標(biāo)為,有,得.雙曲線的兩條漸近線方程為和,則點(diǎn)到雙曲線的兩條漸近線的距離之積為,所以,則,即,故,即,所以.故選:A.【點(diǎn)睛】本題考查雙曲線的離心率,構(gòu)造的齊次方程是解決本題的關(guān)鍵,屬于中檔題.11、A【解析】

由可得,因?yàn)槭沁呴L(zhǎng)為的正三角形,所以,故選A.12、A【解析】

根據(jù)復(fù)數(shù)除法運(yùn)算化簡(jiǎn),結(jié)合純虛數(shù)定義即可求得m的值.【詳解】由復(fù)數(shù)的除法運(yùn)算化簡(jiǎn)可得,因?yàn)槭羌兲摂?shù),所以,∴,故選:A.【點(diǎn)睛】本題考查了復(fù)數(shù)的概念和除法運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

依題意設(shè)前三個(gè)和尚的身高依次為,第四個(gè)(最高)和尚的身高為,則,解得,又,解得,又因?yàn)槌傻缺葦?shù)列,則公比,故.14、15【解析】

由角平分線定理得,利用余弦定理和三角形面積公式,借助三角恒等變化求出面積的最大值.【詳解】畫出圖形:因?yàn)?,,由角平分線定理得,設(shè),則由余弦定理得:即當(dāng)且僅當(dāng),即時(shí)取等號(hào)所以面積的最大值為15故答案為:15【點(diǎn)睛】此題考查解三角形面積的最值問題,通過三角恒等變形后利用均值不等式處理,屬于一般性題目.15、1【解析】試題分析:在中,,,在中,由正弦定理可得即解得,在中,.故答案為1.考點(diǎn):正弦定理的應(yīng)用.16、【解析】解答:由圓的方程可得圓心C的坐標(biāo)為(2,2),半徑等于1.由M(a,b),則|MN|2=(a?2)2+(b?2)2?12=a2+b2?4a?4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b2?4a?4b+7=a2+b2.整理得:4a+4b?7=0.∴a,b滿足的關(guān)系為:4a+4b?7=0.求|MN|的最小值,就是求|MO|的最小值.在直線4a+4b?7=0上取一點(diǎn)到原點(diǎn)距離最小,由“垂線段最短”得,直線OM垂直直線4a+4b?7=0,由點(diǎn)到直線的距離公式得:MN的最小值為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)極小值為,極大值為.(2)【解析】

(1)根據(jù)斜線的斜率即可求得參數(shù),再對(duì)函數(shù)求導(dǎo),即可求得函數(shù)的極值;(2)根據(jù)題意,對(duì)目標(biāo)式進(jìn)行變形,構(gòu)造函數(shù),根據(jù)是單調(diào)減函數(shù),分離參數(shù),求函數(shù)的最值即可求得結(jié)果.【詳解】(1)函數(shù)的定義域?yàn)?,,,,可知,,解得,,可知在,時(shí),,函數(shù)單調(diào)遞增,在時(shí),,函數(shù)單調(diào)遞減,可知函數(shù)的極小值為,極大值為.(2)可以變形為,可得,可知函數(shù)在上單調(diào)遞減,,可得,設(shè),,可知函數(shù)在單調(diào)遞減,,可知,可知參數(shù)的取值范圍為.【點(diǎn)睛】本題考查由切線的斜率求參數(shù)的值,以及對(duì)具體函數(shù)極值的求解,涉及構(gòu)造函數(shù)法,以及利用導(dǎo)數(shù)求函數(shù)的值域;第二問的難點(diǎn)在于對(duì)目標(biāo)式的變形,屬綜合性中檔題.18、(1)b=32【解析】試題分析:(1)本問考查解三角形中的的“邊角互化”.由于求b的值,所以可以考慮到根據(jù)余弦定理將cosB,cosC分別用邊表示,再根據(jù)正弦定理可以將sinAsinC轉(zhuǎn)化為ac,于是可以求出b的值;(2)首先根據(jù)sinB+3cosB=2求出角B的值,根據(jù)第(1)問得到的b值,可以運(yùn)用正弦定理求出ΔABC外接圓半徑R,于是可以將a+c轉(zhuǎn)化為2RsinA+2R試題解析:(1)由cosB應(yīng)用余弦定理,可得a2化簡(jiǎn)得2b=3則b=(2)∵cos∴12cos∵B∈(0,π)∴B+π6=法一.∵2R=b則a+c==sin=3=3sin又∵0<A<2π3,法二因?yàn)閎=32得34又因?yàn)閍c≤(a+c2)2所以34=(a+c)∴a+c≤3又由三邊關(guān)系定理可知綜上a+c∈(考點(diǎn):1.正、余弦定理;2.正弦型函數(shù)求值域;3.重要不等式的應(yīng)用.19、(1)(2)【解析】

(1)將曲線的方程化成直角坐標(biāo)方程為,當(dāng)時(shí),線段取得最小值,利用幾何法求弦長(zhǎng)即可.(2)當(dāng)點(diǎn)與點(diǎn)不重合時(shí),設(shè),由利用向量的數(shù)量積等于可求解,最后驗(yàn)證當(dāng)點(diǎn)與點(diǎn)重合時(shí)也滿足.【詳解】解曲線的方程化成直角坐標(biāo)方程為即圓心,半徑,曲線為過定點(diǎn)的直線,易知在圓內(nèi),當(dāng)時(shí),線段長(zhǎng)最小為當(dāng)點(diǎn)與點(diǎn)不重合時(shí),設(shè),化簡(jiǎn)得當(dāng)點(diǎn)與點(diǎn)重合時(shí),也滿足上式,故點(diǎn)的軌跡方程為【點(diǎn)睛】本題考查了極坐標(biāo)與普通方程的互化、直線與圓的位置關(guān)系、列方程求動(dòng)點(diǎn)的軌跡方程,屬于基礎(chǔ)題.20、(Ⅰ)詳見解析;(Ⅱ).【解析】試題分析:(Ⅰ)連接交于,得,所以面,又,得面,即可利用面面平行的判定定理,證得結(jié)論;(Ⅱ)如圖,以O(shè)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,求的平面的一個(gè)法向量,利用向量和向量夾角公式,即可求解與平面所成角的正弦值.試題解析:(Ⅰ)連接BD交AC于O,易知O是BD的中點(diǎn),故OG//BE,BE面BEF,OG在面BEF外,所以O(shè)G//面BEF;又EF//AC,AC在面BEF外,AC//面BEF,又AC與OG相交于點(diǎn)O,面ACG有兩條相交直線與面BEF平行,故面ACG∥面BEF;(Ⅱ)如圖,以O(shè)為坐標(biāo)原點(diǎn),分別以O(shè)C、OD、OF為x、y、z軸建立空間直角坐標(biāo)系,則,,,,,,,設(shè)面ABF的法向量為,依題意有,,令,,,,,直線AD與面ABF成的角的正弦值是.21、(1)見解析(2)(3)【解析】

(1)若函數(shù)有局部對(duì)稱點(diǎn),則,即有解,即可求證;(2)由題可得在內(nèi)有解,即方程在區(qū)間上有解,則,設(shè),利用導(dǎo)函數(shù)求得的范圍,即可求得的范圍;(3)由題可得在上有解,即在上有解,設(shè),則可變形為方程在區(qū)間內(nèi)有解,進(jìn)而求解即可.【詳解】(1)證明:由得,代入得,則得到關(guān)于x的方程,由于且,所以,所以函數(shù)必有局部對(duì)稱點(diǎn)(2)解:由題,因?yàn)楹瘮?shù)在定義域內(nèi)有局部對(duì)稱點(diǎn)所以在內(nèi)有解,即方程在區(qū)間上有解,所以,設(shè),則,所以令,則,當(dāng)時(shí),,故函數(shù)在區(qū)間上單調(diào)遞減,當(dāng)時(shí),,故函數(shù)在區(qū)間上單調(diào)遞增,所以,因?yàn)?,所以,所以,所以(3)解:由題,,由于,所以,所以(*)在R上有解,令,則,所以方程(*)變?yōu)樵趨^(qū)間內(nèi)有解,需滿足條件:,即,得【點(diǎn)睛】本題考查函數(shù)的局部對(duì)稱點(diǎn)的理解,利用導(dǎo)函數(shù)研究函數(shù)的最值問題,考查轉(zhuǎn)化思想與運(yùn)算能力.22、(1)見解析,或;(2)存在,.

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論