




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
寧波市海曙區(qū)重點達標名校2024年中考數學最后沖刺模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.計算的值為()A. B.-4 C. D.-22.長度單位1納米=10A.25.1×10-6米B.C.2.51×105米D.3.∠BAC放在正方形網格紙的位置如圖,則tan∠BAC的值為()A. B. C. D.4.將一把直尺和一塊含30°和60°角的三角板ABC按如圖所示的位置放置,如果∠CDE=40°,那么∠BAF的大小為()A.10° B.15° C.20° D.25°5.如圖,在△ABC中,點D在AB邊上,DE∥BC,與邊AC交于點E,連結BE,記△ADE,△BCE的面積分別為S1,S2,()A.若2AD>AB,則3S1>2S2 B.若2AD>AB,則3S1<2S2C.若2AD<AB,則3S1>2S2 D.若2AD<AB,則3S1<2S26.若一組數據2,3,4,5,x的平均數與中位數相等,則實數x的值不可能是()A.6 B.3.5 C.2.5 D.17.下列計算正確的是()A.x2+x3=x5 B.x2?x3=x5 C.(﹣x2)3=x8 D.x6÷x2=x38.下列二次根式中,最簡二次根式的是()A. B. C. D.9.﹣2×(﹣5)的值是()A.﹣7B.7C.﹣10D.1010.-5的相反數是()A.5 B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.在數軸上與表示11的點距離最近的整數點所表示的數為_____.12.若代數式在實數范圍內有意義,則實數x的取值范圍為_____.13.拋物線y=x2﹣2x+3的對稱軸是直線_____.14.大連市內與莊河兩地之間的距離是160千米,若汽車以平均每小時80千米的速度從大連市內開往莊河,則汽車距莊河的路程y(千米)與行駛的時間x(小時)之間的函數關系式為_____.15.函數y=中自變量x的取值范圍是________,若x=4,則函數值y=________.16.拋物線y=﹣x2+bx+c的部分圖象如圖所示,則關于x的一元二次方程﹣x2+bx+c=0的解為_____.17.已知a2+1=3a,則代數式a+的值為.三、解答題(共7小題,滿分69分)18.(10分)天水某公交公司將淘汰某一條線路上“冒黑煙”較嚴重的公交車,計劃購買A型和B型兩行環(huán)保節(jié)能公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元,求購買A型和B型公交車每輛各需多少萬元?預計在該條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1220萬元,且確保這10輛公交車在該線路的年均載客量總和不少于650萬人次,則該公司有哪幾種購車方案?哪種購車方案總費用最少?最少總費用是多少?19.(5分)如圖,AB是⊙O的直徑,BE是弦,點D是弦BE上一點,連接OD并延長交⊙O于點C,連接BC,過點D作FD⊥OC交⊙O的切線EF于點F.(1)求證:∠CBE=∠F;(2)若⊙O的半徑是2,點D是OC中點,∠CBE=15°,求線段EF的長.20.(8分)如圖,在平面直角坐標系中,直線y1=2x﹣2與雙曲線y2=交于A、C兩點,AB⊥OA交x軸于點B,且OA=AB.求雙曲線的解析式;求點C的坐標,并直接寫出y1<y2時x的取值范圍.21.(10分)(1)解方程:x2x-3+5(2)解不等式組并把解集表示在數軸上:3x-1222.(10分)鮮豐水果店計劃用元/盒的進價購進一款水果禮盒以備銷售.據調查,當該種水果禮盒的售價為元/盒時,月銷量為盒,每盒售價每增長元,月銷量就相應減少盒,若使水果禮盒的月銷量不低于盒,每盒售價應不高于多少元?在實際銷售時,由于天氣和運輸的原因,每盒水果禮盒的進價提高了,而每盒水果禮盒的售價比(1)中最高售價減少了,月銷量比(1)中最低月銷量盒增加了,結果該月水果店銷售該水果禮盒的利潤達到了元,求的值.23.(12分)先化簡,再求值:,其中滿足.24.(14分)一茶葉專賣店經銷某種品牌的茶葉,該茶葉的成本價是80元/kg,銷售單價不低于120元/kg.且不高于180元/kg,經銷一段時間后得到如下數據:銷售單價x(元/kg)
120
130
…
180
每天銷量y(kg)
100
95
…
70
設y與x的關系是我們所學過的某一種函數關系.(1)直接寫出y與x的函數關系式,并指出自變量x的取值范圍;(2)當銷售單價為多少時,銷售利潤最大?最大利潤是多少?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
根據二次根式的運算法則即可求出答案.【詳解】原式=-3=-2,故選C.【點睛】本題考查二次根式的運算,解題的關鍵是熟練運用二次根式的運算法則,本題屬于基礎題型.2、D【解析】先將25100用科學記數法表示為2.51×104,再和10-9相乘,等于2.51×10-5米.故選D3、D【解析】
連接CD,再利用勾股定理分別計算出AD、AC、BD的長,然后再根據勾股定理逆定理證明∠ADC=90°,再利用三角函數定義可得答案.【詳解】連接CD,如圖:,CD=,AC=∵,∴∠ADC=90°,∴tan∠BAC==.故選D.【點睛】本題主要考查了勾股定理,勾股定理逆定理,以及銳角三角函數定義,關鍵是證明∠ADC=90°.4、A【解析】
先根據∠CDE=40°,得出∠CED=50°,再根據DE∥AF,即可得到∠CAF=50°,最后根據∠BAC=60°,即可得出∠BAF的大小.【詳解】由圖可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°?50°=10°,故選A.【點睛】本題考查了平行線的性質,熟練掌握這一點是解題的關鍵.5、D【解析】
根據題意判定△ADE∽△ABC,由相似三角形的面積之比等于相似比的平方解答.【詳解】∵如圖,在△ABC中,DE∥BC,∴△ADE∽△ABC,∴,∴若1AD>AB,即時,,此時3S1>S1+S△BDE,而S1+S△BDE<1S1.但是不能確定3S1與1S1的大小,故選項A不符合題意,選項B不符合題意.若1AD<AB,即時,,此時3S1<S1+S△BDE<1S1,故選項C不符合題意,選項D符合題意.故選D.【點睛】考查了相似三角形的判定與性質,三角形相似的判定一直是中考考查的熱點之一,在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形.6、C【解析】
因為中位數的值與大小排列順序有關,而此題中x的大小位置未定,故應該分類討論x所處的所有位置情況:從小到大(或從大到小)排列在中間;結尾;開始的位置.【詳解】(1)將這組數據從小到大的順序排列為2,3,4,5,x,
處于中間位置的數是4,
∴中位數是4,
平均數為(2+3+4+5+x)÷5,
∴4=(2+3+4+5+x)÷5,
解得x=6;符合排列順序;
(2)將這組數據從小到大的順序排列后2,3,4,x,5,
中位數是4,
此時平均數是(2+3+4+5+x)÷5=4,
解得x=6,不符合排列順序;
(3)將這組數據從小到大的順序排列后2,3,x,4,5,
中位數是x,
平均數(2+3+4+5+x)÷5=x,
解得x=3.5,符合排列順序;
(4)將這組數據從小到大的順序排列后2,x,3,4,5,
中位數是3,
平均數(2+3+4+5+x)÷5=3,
解得x=1,不符合排列順序;
(5)將這組數據從小到大的順序排列后x,2,3,4,5,
中位數是3,
平均數(2+3+4+5+x)÷5=3,
解得x=1,符合排列順序;
∴x的值為6、3.5或1.
故選C.【點睛】考查了確定一組數據的中位數,涉及到分類討論思想,較難,要明確中位數的值與大小排列順序有關,一些學生往往對這個概念掌握不清楚,計算方法不明確而解答不完整.注意找中位數的時候一定要先排好順序,然后再根據奇數和偶數個來確定中位數.如果數據有奇數個,則正中間的數字即為所求;如果是偶數個,則找中間兩位數的平均數.7、B【解析】分析:直接利用合并同類項法則以及同底數冪的乘除運算法則和積的乘方運算法則分別計算得出答案.詳解:A、不是同類項,無法計算,故此選項錯誤;B、正確;C、故此選項錯誤;D、故此選項錯誤;故選:B.點睛:此題主要考查了合并同類項以及同底數冪的乘除運算和積的乘方運算,正確掌握運算法則是解題關鍵.8、C【解析】
判定一個二次根式是不是最簡二次根式的方法,就是逐個檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.【詳解】A、=,被開方數含分母,不是最簡二次根式;故A選項錯誤;B、=,被開方數為小數,不是最簡二次根式;故B選項錯誤;C、,是最簡二次根式;故C選項正確;D.=,被開方數,含能開得盡方的因數或因式,故D選項錯誤;故選C.考點:最簡二次根式.9、D【解析】
根據有理數乘法法則計算.【詳解】﹣2×(﹣5)=+(2×5)=10.故選D.【點睛】考查了有理數的乘法法則,(1)兩數相乘,同號得正,異號得負,并把絕對值相乘;(2)任何數同0相乘,都得0;(3)幾個不等于0的數相乘,積的符號由負因數的個數決定,當負因數有奇數個時,積為負;當負因數有偶數個時,積為正;(4)幾個數相乘,有一個因數為0時,積為0.10、A【解析】由相反數的定義:“只有符號不同的兩個數互為相反數”可知-5的相反數是5.故選A.二、填空題(共7小題,每小題3分,滿分21分)11、3【解析】11≈3.317,且11在3和4之間,∵3.317-3=0.317,4-3.317=0.683,且0.683>0.317,∴11距離整數點3最近.12、x≤1【解析】
根據二次根式有意義的條件可求出x的取值范圍.【詳解】由題意可知:1﹣x≥0,∴x≤1故答案為:x≤1.【點睛】本題考查二次根式有意義的條件,解題的關鍵是利用被開方數是非負數解答即可.13、x=1【解析】
把解析式化為頂點式可求得答案.【詳解】解:∵y=x2-2x+3=(x-1)2+2,∴對稱軸是直線x=1,故答案為x=1.【點睛】本題主要考查二次函數的性質,掌握二次函數的頂點式是解題的關鍵,即在y=a(x-h)2+k中,對稱軸為x=h,頂點坐標為(h,k).14、y=160﹣80x(0≤x≤2)【解析】
根據汽車距莊河的路程y(千米)=原來兩地的距離﹣汽車行駛的距離,解答即可.【詳解】解:∵汽車的速度是平均每小時80千米,∴它行駛x小時走過的路程是80x,∴汽車距莊河的路程y=160﹣80x(0≤x≤2),故答案為:y=160﹣80x(0≤x≤2).【點睛】本題考查了根據實際問題確定一次函數的解析式,找到所求量的等量關系是解題的關鍵.15、x≥3y=1【解析】根據二次根式有意義的條件求解即可.即被開方數是非負數,結果是x≥3,y=1.16、x1=1,x2=﹣1.【解析】
直接觀察圖象,拋物線與x軸交于1,對稱軸是x=﹣1,所以根據拋物線的對稱性可以求得拋物線與x軸的另一交點坐標,從而求得關于x的一元二次方程﹣x2+bx+c=0的解.【詳解】解:觀察圖象可知,拋物線y=﹣x2+bx+c與x軸的一個交點為(1,0),對稱軸為x=﹣1,∴拋物線與x軸的另一交點坐標為(﹣1,0),∴一元二次方程﹣x2+bx+c=0的解為x1=1,x2=﹣1.故本題答案為:x1=1,x2=﹣1.【點睛】本題考查了二次函數與一元二次方程的關系.一元二次方程-x2+bx+c=0的解實質上是拋物線y=-x2+bx+c與x軸交點的橫坐標的值.17、1【解析】
根據題意a2+1=1a,整體代入所求的式子即可求解.【詳解】∵a2+1=1a,∴a+=+===1.故答案為1.三、解答題(共7小題,滿分69分)18、(1)購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)購買A型公交車8輛,則B型公交車2輛費用最少,最少總費用為1100萬元.【解析】
(1)設購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,根據“A型公交車1輛,B型公交車2輛,共需400萬元;A型公交車2輛,B型公交車1輛,共需350萬元”列出方程組解決問題;(2)設購買A型公交車a輛,則B型公交車(10-a)輛,由“購買A型和B型公交車的總費用不超過1220萬元”和“10輛公交車在該線路的年均載客總和不少于650萬人次”列出不等式組探討得出答案即可.【詳解】(1)設購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,由題意得,解得,答:購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)設購買A型公交車a輛,則B型公交車(10﹣a)輛,由題意得,解得:,因為a是整數,所以a=6,7,8;則(10﹣a)=4,3,2;三種方案:①購買A型公交車6輛,則B型公交車4輛:100×6+150×4=1200萬元;②購買A型公交車7輛,則B型公交車3輛:100×7+150×3=1150萬元;③購買A型公交車8輛,則B型公交車2輛:100×8+150×2=1100萬元;購買A型公交車8輛,則B型公交車2輛費用最少,最少總費用為1100萬元.【點睛】此題考查二元一次方程組和一元一次不等式組的應用,注意理解題意,找出題目蘊含的數量關系,列出方程組或不等式組解決問題.19、(1)詳見解析;(1)【解析】
(1)連接OE交DF于點H,由切線的性質得出∠F+∠EHF=90°,由FD⊥OC得出∠DOH+∠DHO=90°,依據對頂角的定義得出∠EHF=∠DHO,從而求得∠F=∠DOH,依據∠CBE=∠DOH,從而即可得證;(1)依據圓周角定理及其推論得出∠F=∠COE=1∠CBE=30°,求出OD的值,利用銳角三角函數的定義求出OH的值,進一步求得HE的值,利用銳角三角函數的定義進一步求得EF的值.【詳解】(1)證明:連接OE交DF于點H,∵EF是⊙O的切線,OE是⊙O的半徑,∴OE⊥EF.∴∠F+∠EHF=90°.∵FD⊥OC,∴∠DOH+∠DHO=90°.∵∠EHF=∠DHO,∴∠F=∠DOH.∵∠CBE=∠DOH,∴(1)解:∵∠CBE=15°,∴∠F=∠COE=1∠CBE=30°.∵⊙O的半徑是,點D是OC中點,∴.在Rt△ODH中,cos∠DOH=,∴OH=1.∴.在Rt△FEH中,∴【點睛】本題主要考查切線的性質及直角三角形的性質、圓周角定理及三角函數的應用,掌握圓周角定理和切線的性質是解題的關鍵.20、(1);(1)C(﹣1,﹣4),x的取值范圍是x<﹣1或0<x<1.【解析】【分析】(1)作高線AC,根據等腰直角三角形的性質和點A的坐標的特點得:x=1x﹣1,可得A的坐標,從而得雙曲線的解析式;(1)聯立一次函數和反比例函數解析式得方程組,解方程組可得點C的坐標,根據圖象可得結論.【詳解】(1)∵點A在直線y1=1x﹣1上,∴設A(x,1x﹣1),過A作AC⊥OB于C,∵AB⊥OA,且OA=AB,∴OC=BC,∴AC=OB=OC,∴x=1x﹣1,x=1,∴A(1,1),∴k=1×1=4,∴;(1)∵,解得:,,∴C(﹣1,﹣4),由圖象得:y1<y1時x的取值范圍是x<﹣1或0<x<1.【點睛】本題考查了反比例函數和一次函數的綜合;熟練掌握通過求點的坐標進一步求函數解析式的方法;通過觀察圖象,從交點看起,函數圖象在上方的函數值大.21、(1)x=1(2)4<x≤415【解析】
(1)先將整理方程再乘以最小公分母移項合并即可;(2)求出每個不等式的解集,根據找不等式組解集的規(guī)律找出即可.【詳解】(1)+=4,方程整理得:=4,去分母得:x﹣5=4(2x﹣3),移項合并得:7x=7,解得:x=1;經檢驗x=1是分式方程的解;(2)解①得:x≤解②得:x>4∴不等式組的解集是4<x≤,在數軸上表示不等式組的解集為:.【點睛】本題考查了解一元二次方程組與分式方程,解題的關鍵是熟練的掌握解一元二次方程組與分式方程運算法則.22、(1)若使水果禮盒的月銷量不低于盒,每盒售價應不高于元;(2)的值為.【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 產業(yè)經濟學(第3版)課件-企業(yè):目標、結構與組織
- 腎內一科護理查房
- 心血管系統(tǒng)疾病護理常規(guī)
- 園林景觀設計核心要點
- 軟件系統(tǒng)培訓
- 2025年果蔬快速預冷裝置項目深度研究分析報告
- 院前急救體系與實施要點
- 新生兒沐浴制度
- DB32/T 4622.3-2023采供血過程風險管理第3部分:獻血不良反應風險控制規(guī)范
- 學校健康講座課件
- 2024山東財經大學東方學院教師招聘考試筆試試題
- 工作餐配送合同范本
- 水污染治理微波技術研究
- 安全生產檢查咨詢服務安全生產隱患檢查服務方案
- 異常產程的識別和處理
- 中國普通食物營養(yǎng)成分表一覽
- 2024年甘肅省臨夏州永靖縣部分學校中考物理一模試卷+
- 傳染病孕婦的管理與預防
- 國家中長期科技發(fā)展規(guī)劃(2021-2035)
- 機織產品工藝設計與計算改樣本
- 梅隴鎮(zhèn)永聯村未來規(guī)劃方案
評論
0/150
提交評論