




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖南省長沙市岳麓區(qū)湖南師大附中2025屆高一上數(shù)學(xué)期末監(jiān)測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.的外接圓的圓心為O,半徑為1,若,且,則的面積為()A. B.C. D.12.已知函數(shù):①y=2x;②y=log2x;③y=x-1;④y=;則下列函數(shù)圖像(第一象限部分)從左到右依次與函數(shù)序號的對應(yīng)順序是()A.②①③④ B.②③①④C.④①③② D.④③①②3.在長方體中,,,則直線與平面所成角的正弦值為()A. B.C. D.4.已知,則的最小值為()A. B.2C. D.45.將函數(shù)的圖象上各點的橫坐標(biāo)伸長到原來的3倍,再向右平移個單位,得到的函數(shù)的一個對稱中心()A. B.C. D.6.已知函數(shù)f(x)=a+log2(x2+a)(a>0)的最小值為8,則實數(shù)a的取值屬于以下哪個范圍()A.(5,6) B.(7,8)C.(8,9) D.(9,10)7.當(dāng)時,在同一坐標(biāo)系中,函數(shù)與的圖像是()A. B.C. D.8.已知冪函數(shù)的圖象過(4,2)點,則A. B.C. D.9.函數(shù)的部分圖象如圖所示,則,的值分別是()A.2, B.2,C.4, D.4,10.不等式的解集為,則函數(shù)的圖像大致為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.不等式的解集是___________.(用區(qū)間表示)12.已知奇函數(shù)滿足,,若當(dāng)時,,則______13.在平面直角坐標(biāo)系中,動點P到兩條直線與的距離之和等于2,則點P到坐標(biāo)原點的距離的最小值為_________.14.在ABC中,H為BC上異于B,C的任一點,M為AH的中點,若,則λ+μ=_________15.若函數(shù)是定義在上的偶函數(shù),當(dāng)時,.則當(dāng)時,______,若,則實數(shù)的取值范圍是_______.16.已知函數(shù),則=_________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)判斷在區(qū)間上的單調(diào)性,并用定義證明;(2)判斷奇偶性,并求在區(qū)間上的值域.18.已知函數(shù)(x∈R,(m>0)是奇函數(shù).(1)求m的值:(2)用定義法證明:f(x)是R上的增函數(shù).19.集合A={x|},B={x|};(1)用區(qū)間表示集合A;(2)若a>0,b為(t>2)的最小值,求集合B;(3)若b<0,A∩B=A,求a、b的取值范圍.20.我國所需的高端芯片很大程度依賴于國外進(jìn)口,“缺芯之痛”關(guān)乎產(chǎn)業(yè)安全、國家經(jīng)濟安全.如今,我國科技企業(yè)正在芯片自主研發(fā)之路中不斷崛起.根據(jù)市場調(diào)查某手機品牌公司生產(chǎn)某款手機的年固定成本為40萬美元,每生產(chǎn)1萬部還需另投入16萬美元.設(shè)該公司一年內(nèi)共生產(chǎn)該款手機萬部并全部銷售完,每萬部的銷售收入為萬美元,且當(dāng)該公司一年內(nèi)共生產(chǎn)該款手機2萬部并全部銷售完時,年利潤為704萬美元.(1)寫出年利潤(萬美元)關(guān)于年產(chǎn)量(萬部)的函數(shù)解析式:(2)當(dāng)年產(chǎn)量為多少萬部時,公司在該款手機的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.21.已知函數(shù)f(x)=x2﹣2x+1+a在區(qū)間[1,2]上有最小值﹣1(1)求實數(shù)a的值;(2)若關(guān)于x的方程f(log2x)+1﹣2klog2x=0在[2,4]上有解,求實數(shù)k的取值范圍;(3)若對任意的x1,x2∈(1,2],任意的p∈[﹣1,1],都有|f(x1)﹣f(x2)|≤m2﹣2mp﹣2成立,求實數(shù)m的取值范圍.(附:函數(shù)g(t)=t在(0,1)單調(diào)遞減,在(1,+∞)單調(diào)遞增.)
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】由,利用向量加法的幾何意義得出△ABC是以A為直角的直角三角形,又|,從而可求|AC|,|AB|的值,利用三角形面積公式即可得解【詳解】由于,由向量加法的幾何意義,O為邊BC中點,∵△ABC的外接圓的圓心為O,半徑為1,∴三角形應(yīng)該是以BC邊為斜邊的直角三角形,∠BAC=,斜邊BC=2,又∵∴|AC|=1,|AB|=,∴S△ABC=,故選B.【點睛】本題主要考查了平面向量及應(yīng)用,三角形面積的求法,屬于基礎(chǔ)題2、D【解析】圖一與冪函數(shù)圖像相對應(yīng),所以應(yīng)④;圖二與反比例函數(shù)相對應(yīng),所以應(yīng)為③;圖三與指數(shù)函數(shù)相對應(yīng),所以應(yīng)為①;圖四與對數(shù)函數(shù)圖像相對應(yīng),所以應(yīng)為②所以對應(yīng)順序為④③①②,故選D3、D【解析】如圖,連接交于點,連接,則結(jié)合已知條件可證得為直線與平面所成角,然后根據(jù)已知數(shù)據(jù)在求解即可【詳解】解:如圖,連接交于點,連接,因為長方體中,,所以四邊形為正方形,所以,,所以,因為平面,所以,因為,所以平面,所以為直線與平面所成角,因為,,所以,在中,,所以直線與平面所成角的正弦值為,故選:D【點睛】此題考查線面角的求法,考查空間想象能力和計算能力,屬于基礎(chǔ)題4、C【解析】根據(jù)給定條件利用均值不等式直接計算作答.【詳解】因為,則,當(dāng)且僅當(dāng),即時取“=”,所以的最小值為.故選:C5、A【解析】先根據(jù)三角函數(shù)圖象變換規(guī)律寫出所得函數(shù)的解析式,再求出其對稱中心,確定選項【詳解】解:函數(shù)的圖象上各點的橫坐標(biāo)伸長到原來的3倍得到圖象的解析式為再向右平移個單位得到圖象的解析式為令,得,所以函數(shù)的對稱中心為觀察選項只有A符合故選A【點睛】本題考查了三角函數(shù)圖象變換規(guī)律,三角函數(shù)圖象、性質(zhì).是三角函數(shù)中的重點知識,在試題中出現(xiàn)的頻率相當(dāng)高6、A【解析】根復(fù)合函數(shù)的單調(diào)性,得到函數(shù)f(x)的單調(diào)性,求解函數(shù)的最小值f(x)min=8,構(gòu)造新函數(shù)g(a)=a+log2a-8,利用零點的存在定理,即可求解.【詳解】由題意,根復(fù)合函數(shù)的單調(diào)性,可得函數(shù)f(x)在[0,+∞)上是增函數(shù),在(-∞,0)上遞減,所以函數(shù)f(x)的最小值f(x)min=f(0)=a+log2a=8,令g(a)=a+log2a-8,a>0,則g(5)=log25-3<0,g(6)=log26-2>0,又g(a)在(0,+∞)上是增函數(shù),所以實數(shù)a所在的區(qū)間為(5,6)【點睛】本題主要考查了函數(shù)的單調(diào)性的應(yīng)用,以及零點的存在定理的應(yīng)用,其中解答中根據(jù)復(fù)合函數(shù)的單調(diào)性,求得函數(shù)的最小值,構(gòu)造新函數(shù),利用零點的存在定理求解是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.7、D【解析】根據(jù)指數(shù)型函數(shù)和對數(shù)型函數(shù)單調(diào)性,判斷出正確選項.【詳解】由于,所以為上的遞減函數(shù),且過;為上的單調(diào)遞減函數(shù),且過,故只有D選項符合.故選:D.【點睛】本小題主要考查指數(shù)型函數(shù)、對數(shù)型函數(shù)單調(diào)性判斷,考查函數(shù)圖像的識別,屬于基礎(chǔ)題.8、A【解析】詳解】由題意可設(shè),又函數(shù)圖象過定點(4,2),,,從而可知,則.故選A9、B【解析】根據(jù)圖象的兩個點、的橫坐標(biāo),得到四分之三個周期的值,得到周期的值,做出的值,把圖象所過的一個點的坐標(biāo)代入方程做出初相,寫出解析式,代入數(shù)值得到結(jié)果【詳解】解:由圖象可得:,∴,∴,又由函數(shù)的圖象經(jīng)過,∴,∴,即,又由,則故選:B【點睛】本題考查由部分圖象確定函數(shù)的解析式,屬于基礎(chǔ)題關(guān)鍵點點睛:本題解題的關(guān)鍵是利用代入點的坐標(biāo)求出初相.10、C【解析】根據(jù)不等式的解集求出參數(shù),從而可得,根據(jù)該形式可得正確的選項【詳解】因為不等式的解集為,故,故,故,令,解得或,故拋物線開口向下,與軸的交點的橫坐標(biāo)為,故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)一元二次不等式解法求不等式解集.【詳解】由題設(shè),,即,所以不等式解集為.故答案為:12、【解析】由,可得是以周期為周期函數(shù),由奇函數(shù)的性質(zhì)以及已知區(qū)間上的解析式可求值,從而計算求解.【詳解】因為,即是以周期為的周期函數(shù).為奇函數(shù)且當(dāng)時,,,當(dāng)時,所以故答案為:13、【解析】∵3x﹣y=0與x+3y=0的互相垂直,且交點為原點,∴設(shè)點P到兩條直線的距離分別為a,b,則a≥0,b≥0,則a+b=2,即b=2﹣a≥0,得0≤a≤2,由勾股定理可知===,∵0≤a≤2,∴當(dāng)a=1時,的距離,故答案為14、##0.5【解析】根據(jù)題意,用表示出與,求出λ、μ的值即可【詳解】設(shè),則=(1﹣k)+k=,∴故答案為:15、①.②.【解析】根據(jù)給定條件利用偶函數(shù)的定義即可求出時解析式;再借助函數(shù)在單調(diào)性即可求解作答.【詳解】因函數(shù)是定義在上的偶函數(shù),且當(dāng)時,,則當(dāng)時,,,所以當(dāng)時,;依題意,在上單調(diào)遞增,則,解得,所以實數(shù)的取值范圍是.故答案為:;16、【解析】按照解析式直接計算即可.【詳解】.故答案為:-3.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)函數(shù)在區(qū)間上單調(diào)遞增,證明見解析(2)函數(shù)為奇函數(shù),在區(qū)間上的值域為【解析】(1)利用定義法證明函數(shù)單調(diào)性;(2)先得到定義域關(guān)于原點對稱,結(jié)合得到函數(shù)為奇函數(shù),利用第一問的單調(diào)性求出在區(qū)間上的值域.【小問1詳解】在區(qū)間上單調(diào)遞增,證明如下:,,且,有.因為,,且,所以,.于是,即.故在區(qū)間上單調(diào)遞增.【小問2詳解】的定義域為.因,所以為奇函數(shù).由(1)得在區(qū)間上單調(diào)遞增,結(jié)合奇偶性可得在區(qū)間上單調(diào)遞增.又因為,,所以在區(qū)間上的值域為.18、(1)2(2)證明見解析【解析】(1)因為是定義在R上的奇函數(shù),則,即可得出答案.(2)通過,來證明f(x)是R上的增函數(shù).【小問1詳解】因為函數(shù)是奇函數(shù),則,解得,經(jīng)檢驗,當(dāng)時,為奇函數(shù),所以值為2;【小問2詳解】證明:由(1)可知,,設(shè),則,因為,所以,故,即,所以是R上的增函數(shù).19、(1);(2);(3),.【解析】(1)解分式不等式即可得集合A;(2)利用基本不等式求得b的最小值,將b代入并因式分解,即可得解;(3)由題意知A?B,對a分類討論即求得范圍【詳解】解:(1)由,有,解得x≤﹣2或x>3∴A=(-∞,-2]∪(3,+∞)(2)t>2,當(dāng)且僅當(dāng)t=5時取等號,故即為:且a>0∴,解得故B={x|}(3)b<0,A∩B=A,有A?B,而可得:a=0時,化為:2x﹣b<0,解得但不滿足A?B,舍去a>0時,解得:或但不滿足A?B,舍去a<0時,解得或∵A?B∴,解得∴a、b的取值范圍是a∈,b∈(-4,0).【點評】本題考查了集合運算性質(zhì)、不等式的解法、分類討論方法,考查了推理能力與計算能力,屬于中檔題.20、(1);(2)32萬部,最大值為6104萬美元.【解析】(1)先由生產(chǎn)該款手機2萬部并全部銷售完時,年利潤為704萬美元,解得,然后由,將代入即可.(2)當(dāng)時利用二次函數(shù)的性質(zhì)求解;當(dāng)時,利用基本不等式求解,綜上對比得到結(jié)論.【詳解】(1)因為生產(chǎn)該款手機2萬部并全部銷售完時,年利潤為704萬美元.所以,解得,當(dāng)時,,當(dāng)時,.所以(2)①當(dāng)時,,所以;②當(dāng)時,,由于,當(dāng)且僅當(dāng),即時,取等號,所以此時的最大值為5760.綜合①②知,當(dāng),取得最大值為6104萬美元.【點睛】思路點睛:應(yīng)用題的基本解題步驟:(1)根據(jù)實際問題抽象出函數(shù)的解析式,再利用基本不等式求得函數(shù)的最值;(2)設(shè)變量時一般要把求最大值或最小值的變量定義為函數(shù);(3)解應(yīng)用題時,要注意變量的實際意義及其取值范圍;(4)在應(yīng)用基本不等式求函數(shù)最值時,若等號取不到,可利用函數(shù)的單調(diào)性求解21、(1)﹣1;(2)0≤t;(3)m≤﹣3或m≥3【解析】(1)由二次函數(shù)的圖像與性質(zhì)即可求解.(2)采用換元把方程化為t2﹣(2+2k)t+1=0在[1,2]上有解,然后再分離參數(shù)法,化為t與2+2k在[1,2]上有交點即可求解.(3)求出|f(x1)﹣f(x2)|max<1,把問題轉(zhuǎn)化為1≤m2﹣2mp﹣2恒成立,研究關(guān)于的函數(shù)h(p)=﹣2mp+m2﹣3,使其最小值大于零即可.【詳解】(1)函數(shù)f(x)=x2﹣2x+1+a對稱軸為x=1,所以區(qū)間[1,2]上f(x)min=f(1)=a,由根據(jù)題意函數(shù)f(x)=x2﹣2x+1+a在區(qū)間[1,2]上有最小值﹣1所以a=﹣1(2)由(1)知f(x)=x2﹣2x,若關(guān)于x的方程f(log2x)+1﹣2k?log2x=0在[2,4]上有解,令t=log2x,t∈[1,2]則f(t)+1﹣2kt=0,即t2﹣(2+2k)t+1=0在[1,2]上有解,t2+2k在[1,2]上有解,令函數(shù)g(t)=t,在(0,1)單調(diào)遞減
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 產(chǎn)品特性分析培訓(xùn)
- 中小學(xué)生心理健康教育整體方案
- 代駕安全責(zé)任協(xié)議書
- 鏟車銷售、維修與保養(yǎng)服務(wù)合同
- 燒烤連鎖品牌加盟管理合同
- 房地產(chǎn)開發(fā)企業(yè)財務(wù)代理記賬及土地增值稅合同
- 礦山安全標(biāo)志牌設(shè)計制作及銷售合同
- 車輛保養(yǎng)與道路救援服務(wù)合作協(xié)議
- 離婚時遺產(chǎn)繼承與財產(chǎn)分割協(xié)議書
- 茶葉拍賣會組織與委托合同
- 大學(xué)生應(yīng)急救護(hù)知到智慧樹章節(jié)測試課后答案2024年秋西安歐亞學(xué)院
- 2024年瑜伽館瑜伽課程收費標(biāo)準(zhǔn)及退費規(guī)則合同3篇
- 互聯(lián)網(wǎng)營銷師技能競賽理論考試題庫及答案(濃縮300題)
- 土木工程力學(xué)(本)-001-國開機考復(fù)習(xí)資料
- 機械原理課程設(shè)計 半自動鉆床說明書(完全)
- 2024-2025年江蘇專轉(zhuǎn)本英語歷年真題(含答案)
- 遼寧大學(xué)《材料力學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 工業(yè)5G專網(wǎng)構(gòu)筑新質(zhì)生產(chǎn)力發(fā)展新優(yōu)勢
- 電線電纜生產(chǎn)常見質(zhì)量問題改善與提升
- 《瀝青基鉀離子電池碳負(fù)極材料的構(gòu)筑及性能研究》
- 新安全生產(chǎn)法圖文培訓(xùn)
評論
0/150
提交評論