




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
裝訂線裝訂線PAGE2第1頁,共3頁湖北恩施學(xué)院
《字體設(shè)計(jì)》2022-2023學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、計(jì)算機(jī)視覺中的醫(yī)學(xué)圖像分析具有重要的臨床應(yīng)用價(jià)值。假設(shè)要從一組X光片中檢測出病變區(qū)域,同時(shí)要區(qū)分不同類型的病變。以下哪種技術(shù)和方法在醫(yī)學(xué)圖像分析中最為常用和有效?()A.形態(tài)學(xué)操作B.圖像分割與分類C.特征提取與選擇D.以上方法綜合運(yùn)用2、當(dāng)進(jìn)行視頻中的動(dòng)作識(shí)別時(shí),假設(shè)要分析一段運(yùn)動(dòng)員訓(xùn)練的視頻,識(shí)別出其中的各種動(dòng)作,如跑步、跳躍和舉重等。視頻中的動(dòng)作可能存在速度變化、遮擋和視角變化等問題。為了準(zhǔn)確識(shí)別這些動(dòng)作,以下哪種技術(shù)是關(guān)鍵的?()A.對(duì)每一幀圖像進(jìn)行獨(dú)立的動(dòng)作分類,然后綜合結(jié)果B.利用光流信息來捕捉視頻中的運(yùn)動(dòng)模式C.只關(guān)注視頻中的關(guān)鍵幀,忽略其他幀D.不考慮視頻的時(shí)序信息,將其視為一系列獨(dú)立的圖像3、在計(jì)算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,目標(biāo)可能會(huì)被遮擋、變形或快速移動(dòng)。假設(shè)要跟蹤一個(gè)在人群中快速移動(dòng)的人物,以下哪種跟蹤算法可能更適合應(yīng)對(duì)這種復(fù)雜情況?()A.基于卡爾曼濾波的跟蹤算法B.基于粒子濾波的跟蹤算法C.基于均值漂移的跟蹤算法D.基于模板匹配的跟蹤算法4、計(jì)算機(jī)視覺在虛擬現(xiàn)實(shí)(VR)和增強(qiáng)現(xiàn)實(shí)(AR)中有著重要的應(yīng)用。假設(shè)要在VR游戲中實(shí)現(xiàn)真實(shí)的場景交互。以下關(guān)于計(jì)算機(jī)視覺在VR/AR中的描述,哪一項(xiàng)是不正確的?()A.可以通過對(duì)用戶的動(dòng)作和姿態(tài)進(jìn)行識(shí)別,實(shí)現(xiàn)自然的交互操作B.能夠?qū)⑻摂M物體與真實(shí)場景進(jìn)行準(zhǔn)確的融合和匹配C.計(jì)算機(jī)視覺技術(shù)可以提高VR/AR體驗(yàn)的沉浸感和真實(shí)感D.VR/AR中的計(jì)算機(jī)視覺應(yīng)用不存在任何技術(shù)挑戰(zhàn)和限制5、計(jì)算機(jī)視覺中的姿態(tài)估計(jì)任務(wù)是估計(jì)人體或物體在三維空間中的姿態(tài)。假設(shè)要估計(jì)一個(gè)人體模特的姿態(tài)。以下關(guān)于姿態(tài)估計(jì)的描述,哪一項(xiàng)是不正確的?()A.可以通過關(guān)鍵點(diǎn)檢測和關(guān)節(jié)角度計(jì)算來估計(jì)人體姿態(tài)B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)可以直接預(yù)測人體姿態(tài)的參數(shù)C.姿態(tài)估計(jì)在虛擬現(xiàn)實(shí)和增強(qiáng)現(xiàn)實(shí)等應(yīng)用中具有重要作用D.姿態(tài)估計(jì)的結(jié)果總是非常準(zhǔn)確,不受人體遮擋和復(fù)雜動(dòng)作的影響6、計(jì)算機(jī)視覺中的眼底圖像分析對(duì)于眼科疾病的診斷具有重要意義。以下關(guān)于眼底圖像分析的描述,不準(zhǔn)確的是()A.可以檢測眼底的病變、血管異常和視網(wǎng)膜結(jié)構(gòu)的改變B.深度學(xué)習(xí)方法在眼底圖像分析中能夠自動(dòng)提取特征和進(jìn)行疾病分類C.眼底圖像分析需要高質(zhì)量的圖像數(shù)據(jù)和專業(yè)的醫(yī)學(xué)知識(shí)標(biāo)注D.眼底圖像分析技術(shù)已經(jīng)非常成熟,能夠替代醫(yī)生的診斷7、計(jì)算機(jī)視覺中的圖像增強(qiáng)技術(shù)可以改善圖像質(zhì)量。假設(shè)要對(duì)一張低光照條件下拍攝的圖像進(jìn)行增強(qiáng),以下關(guān)于圖像增強(qiáng)方法的描述,正確的是:()A.簡單地增加圖像的亮度就能有效改善低光照圖像的質(zhì)量B.直方圖均衡化方法總是能夠在不引入噪聲的情況下增強(qiáng)圖像對(duì)比度C.基于深度學(xué)習(xí)的圖像增強(qiáng)方法能夠自適應(yīng)地學(xué)習(xí)到適合的增強(qiáng)策略D.圖像增強(qiáng)不會(huì)改變圖像的原始信息和內(nèi)容8、計(jì)算機(jī)視覺中的人臉檢測和識(shí)別是熱門研究方向。假設(shè)要在一個(gè)大規(guī)模的人臉數(shù)據(jù)庫中進(jìn)行快速準(zhǔn)確的人臉識(shí)別,以下哪種特征提取方法可能更具優(yōu)勢?()A.基于幾何特征的方法B.基于局部二值模式(LBP)的方法C.基于深度學(xué)習(xí)的方法D.基于主成分分析(PCA)的方法9、計(jì)算機(jī)視覺中的語義理解旨在理解圖像或視頻中的高層語義信息。以下關(guān)于語義理解的說法,不正確的是()A.語義理解需要將圖像中的物體、場景和事件等與先驗(yàn)知識(shí)進(jìn)行關(guān)聯(lián)和解釋B.知識(shí)圖譜可以為語義理解提供豐富的語義信息和關(guān)系C.語義理解在圖像描述生成、問答系統(tǒng)等任務(wù)中發(fā)揮著重要作用D.語義理解已經(jīng)達(dá)到了非常完美的程度,能夠準(zhǔn)確理解任何復(fù)雜的圖像或視頻內(nèi)容10、計(jì)算機(jī)視覺在農(nóng)業(yè)中的應(yīng)用可以幫助監(jiān)測農(nóng)作物的生長狀況。假設(shè)要通過圖像分析判斷農(nóng)作物的病蟲害程度,以下關(guān)于農(nóng)業(yè)計(jì)算機(jī)視覺應(yīng)用的描述,正確的是:()A.僅依靠農(nóng)作物的顏色特征就能準(zhǔn)確判斷病蟲害的程度B.不同農(nóng)作物品種和生長階段對(duì)病蟲害判斷的影響不大C.結(jié)合圖像的紋理、形狀和顏色等多特征,可以更準(zhǔn)確地評(píng)估農(nóng)作物的健康狀況D.農(nóng)業(yè)環(huán)境的復(fù)雜性對(duì)計(jì)算機(jī)視覺的應(yīng)用沒有挑戰(zhàn)11、對(duì)于圖像的語義理解任務(wù),假設(shè)要理解一張圖像所表達(dá)的場景和事件,例如判斷一張圖像是在舉行婚禮還是在舉辦音樂會(huì)。圖像中的信息可能比較隱晦和復(fù)雜。以下哪種方法可能有助于提高語義理解的準(zhǔn)確性?()A.構(gòu)建圖像的語義圖,分析物體之間的關(guān)系B.只關(guān)注圖像中的主要物體,忽略背景信息C.對(duì)圖像進(jìn)行簡單的分類,不進(jìn)行深入的語義分析D.隨機(jī)猜測圖像的語義12、在計(jì)算機(jī)視覺的自動(dòng)駕駛應(yīng)用中,車輛需要準(zhǔn)確識(shí)別道路標(biāo)志、交通信號(hào)燈和其他車輛的狀態(tài)。對(duì)于實(shí)時(shí)性和準(zhǔn)確性要求極高的場景,以下哪種傳感器融合技術(shù)能夠?yàn)檐囕v提供更全面和可靠的環(huán)境感知?()A.攝像頭與激光雷達(dá)的融合B.毫米波雷達(dá)與超聲波傳感器的融合C.多種攝像頭的融合D.以上都是13、在計(jì)算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,假設(shè)要跟蹤一個(gè)在人群中移動(dòng)的物體。以下關(guān)于跟蹤算法的選擇,哪一項(xiàng)是需要著重考慮的?()A.算法對(duì)目標(biāo)外觀變化的適應(yīng)性B.算法的計(jì)算復(fù)雜度,越低越好C.算法是否能夠處理多個(gè)同時(shí)移動(dòng)的目標(biāo)D.算法在處理靜態(tài)場景時(shí)的性能14、在計(jì)算機(jī)視覺的圖像配準(zhǔn)任務(wù)中,假設(shè)要將兩張拍攝角度不同的同一物體的圖像進(jìn)行對(duì)齊。以下關(guān)于特征匹配的方法,哪一項(xiàng)是不太可靠的?()A.使用SIFT(Scale-InvariantFeatureTransform)特征進(jìn)行匹配B.基于像素值的直接比較進(jìn)行匹配C.利用SURF(SpeededUpRobustFeatures)特征進(jìn)行匹配D.通過ORB(OrientedFASTandRotatedBRIEF)特征進(jìn)行匹配15、在計(jì)算機(jī)視覺的圖像分類任務(wù)中,假設(shè)數(shù)據(jù)集存在類別不平衡問題,某些類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類別。以下哪種方法可以緩解這種不平衡對(duì)分類模型的影響?()A.對(duì)少數(shù)類進(jìn)行過采樣或?qū)Χ鄶?shù)類進(jìn)行欠采樣B.只使用多數(shù)類的樣本進(jìn)行訓(xùn)練C.不考慮類別不平衡,直接訓(xùn)練模型D.隨機(jī)選擇樣本進(jìn)行訓(xùn)練16、在計(jì)算機(jī)視覺的圖像增強(qiáng)任務(wù)中,假設(shè)要提高一張低光照圖像的質(zhì)量。以下關(guān)于圖像增強(qiáng)方法的描述,正確的是:()A.直方圖均衡化能夠均勻分布圖像的灰度級(jí),但可能會(huì)導(dǎo)致細(xì)節(jié)丟失B.基于濾波的方法可以有效地去除噪聲,但同時(shí)也會(huì)模糊圖像的邊緣C.伽馬校正只適用于校正過亮的圖像,對(duì)于低光照圖像效果不佳D.所有的圖像增強(qiáng)方法都能夠在不引入任何失真的情況下提高圖像質(zhì)量17、計(jì)算機(jī)視覺中的圖像語義分割需要為圖像中的每個(gè)像素分配類別標(biāo)簽。假設(shè)要對(duì)一張城市街景圖像進(jìn)行語義分割,包括道路、建筑物、車輛和行人等。以下哪種圖像語義分割方法在處理這種復(fù)雜場景時(shí)能夠提供更精細(xì)的分割結(jié)果?()A.全卷積網(wǎng)絡(luò)(FCN)B.U-NetC.SegNetD.DeepLab18、在計(jì)算機(jī)視覺的圖像檢索任務(wù)中,根據(jù)用戶的需求從圖像數(shù)據(jù)庫中查找相關(guān)圖像。假設(shè)要從一個(gè)大型的圖像庫中檢索包含特定物體的圖像,以下關(guān)于圖像檢索方法的描述,哪一項(xiàng)是不正確的?()A.可以基于圖像的內(nèi)容特征,如顏色、形狀和紋理等,進(jìn)行相似性度量和檢索B.深度學(xué)習(xí)模型能夠提取更具語義和判別力的特征,提高圖像檢索的準(zhǔn)確性C.圖像檢索的結(jié)果只取決于圖像的特征表示,與檢索算法的效率無關(guān)D.可以結(jié)合用戶的反饋和交互,不斷優(yōu)化圖像檢索的結(jié)果19、在計(jì)算機(jī)視覺的研究中,數(shù)據(jù)集的質(zhì)量和規(guī)模對(duì)模型的訓(xùn)練和性能評(píng)估至關(guān)重要。以下關(guān)于數(shù)據(jù)集的描述,不準(zhǔn)確的是()A.大規(guī)模、多樣化和標(biāo)注準(zhǔn)確的數(shù)據(jù)集有助于訓(xùn)練出泛化能力強(qiáng)的模型B.一些公開的數(shù)據(jù)集如ImageNet、COCO等為計(jì)算機(jī)視覺研究提供了重要的基準(zhǔn)C.數(shù)據(jù)集的構(gòu)建需要耗費(fèi)大量的時(shí)間和人力,但可以通過數(shù)據(jù)增強(qiáng)技術(shù)來減少對(duì)原始數(shù)據(jù)的需求D.數(shù)據(jù)集一旦構(gòu)建完成,就不需要再進(jìn)行更新和擴(kuò)展,能夠一直滿足研究的需求20、計(jì)算機(jī)視覺在智能交通系統(tǒng)中的應(yīng)用可以優(yōu)化交通流量和提高安全性。假設(shè)要通過計(jì)算機(jī)視覺監(jiān)測道路上的車輛擁堵情況。以下關(guān)于計(jì)算機(jī)視覺在智能交通中的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過車輛檢測和計(jì)數(shù)來評(píng)估道路的擁堵程度B.能夠識(shí)別車輛的類型和行駛方向,為交通管理提供數(shù)據(jù)支持C.計(jì)算機(jī)視覺在智能交通中的應(yīng)用完全不受惡劣天氣和光照條件的影響D.可以與交通信號(hào)控制系統(tǒng)聯(lián)動(dòng),實(shí)現(xiàn)自適應(yīng)的交通信號(hào)配時(shí)二、簡答題(本大題共3個(gè)小題,共15分)1、(本題5分)說明計(jì)算機(jī)視覺在橡膠制品檢測中的應(yīng)用。2、(本題5分)描述計(jì)算機(jī)視覺在智能制造中的應(yīng)用。3、(本題5分)簡述計(jì)算機(jī)視覺中基于深度學(xué)習(xí)的目標(biāo)檢測算法。三、分析題(本大題共5個(gè)小題,共25分)1、(本題5分)觀察某兒童讀物的有聲讀物封面設(shè)計(jì),闡述其如何通過視覺元素吸引兒童讀者并傳達(dá)有聲讀物的特點(diǎn)。2、(本題5分)選取一個(gè)電商平臺(tái)的售后服務(wù)頁面設(shè)計(jì),分析其視覺效果、服務(wù)內(nèi)容展示和用戶反饋處理,討論如何提高用戶的滿意度和平臺(tái)的口碑。3、(本題5分)分析某公益組織的網(wǎng)站設(shè)計(jì),研究其在信息架構(gòu)、視覺設(shè)計(jì)、用戶體驗(yàn)方面的表現(xiàn),以及如何更好地傳達(dá)公益理念。4、(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國數(shù)字化城市行業(yè)發(fā)展預(yù)測及前景調(diào)研研究報(bào)告
- 春季小學(xué)二年級(jí)班主任工作計(jì)劃
- 病理生理學(xué)??荚囶}含參考答案
- 驗(yàn)光員模擬練習(xí)題+參考答案
- 化工生產(chǎn)技術(shù)習(xí)題+答案
- 職業(yè)技術(shù)學(xué)院2024級(jí)國際商務(wù)專業(yè)人才培養(yǎng)方案
- 2025年江蘇省揚(yáng)州市江都區(qū)中考一模英語試題(原卷版+解析版)
- 浙江省強(qiáng)基聯(lián)盟2024-2025學(xué)年高一下學(xué)期4月期中英語試題(原卷版+解析版)
- 航空物流運(yùn)輸中的跨境電商物流解決方案考核試卷
- 絹絲在化妝品領(lǐng)域的創(chuàng)新研發(fā)與應(yīng)用實(shí)踐考核試卷
- 功夫茶泡茶技巧
- 智能音箱行業(yè)發(fā)展趨勢與市場前景深度解析
- 2025上半年廣西現(xiàn)代物流集團(tuán)社會(huì)招聘校園招聘149人筆試參考題庫附帶答案詳解
- 出售東西合同樣本
- 2024年榆林能源集團(tuán)有限公司招聘工作人員筆試真題
- 防汛抗旱合同協(xié)議
- 2025年氣瓶充裝作業(yè)人員P證理論考試練習(xí)試題(400題)附答案
- 2025年4月浙江省嘉興市嘉善縣初中教學(xué)質(zhì)量調(diào)研中考一模數(shù)學(xué)卷(原卷版+解析版)
- 2025-2030中國皮膚填充材料行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報(bào)告
- 2024年度企業(yè)所得稅匯算清繳最 新稅收政策解析及操作規(guī)范專題培訓(xùn)(洛陽稅務(wù)局)
- 2025年武漢二調(diào)數(shù)學(xué)試題及答案
評(píng)論
0/150
提交評(píng)論