




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
IQVIA
WhitePaper
DigitalTransformation:
ANewEraforClinicalTrials
NATALIAKOTCHIE,SeniorVicePresident,AppliedDataScienceCenter
CHRISTINALARSEN,Director,Innovation,DataSciences,Safety&MedicalRAJNEESHPATIL,VicePresident,DigitalStrategy&Innovation
SABRINASTEFFEN,VicePresident,HeadofInnovation&DataStrategyforDataSciences,Safety&Medical
Tableofcontents
Introduction3
Technologytrendsinclinicaldevelopment3
Designandplanning:Reducing‘whitespace’6
Earlyiterativeplanningandbenchmarking6
Real-timescenarioplanning7
Demandforreal-timedatafordecision-making7
Needforincreasedsitesupport7
Dataflowanddigitization,enablingfasterinsights8
Callforcommondatamodelsandstandards9
Remainingbottlenecks:‘Collaborationtax’andtheneedforindustry-wideadoption9
Conclusion9
References10
Abouttheauthors11
Introduction
Digitaltransformationishappeningallaroundineverydaylife.Smartphones,watchesandlaptopsconnectandsyncseamlessly;AI-drivenecommerceimprovesconsumer
experiencesforshopping,streamingentertainment
andsocialmedia.Intheretailsectorinparticular,digital
transformationisaddingvalueforcustomers.Operational
processesarebeingsuccessfullystandardized.One
exampleistheuseofstock-keepingunits(SKUs)that
appearasbarcodesorquickresponse(QR)codeson
retailproductlabels.Theseenableretailerstomanagethesupplychainandstockingprocess,increasing
productavailabilityforconsumers.Digitalbankinghasdisruptedtraditionalbankingmodelsbyimplementingstandardizationandcommondefinitions,improving
speed,qualityandgovernanceofinteractions,all
translatingintoabetterend-userexperience.
Theever-increasingcomplexityofclinicaltrialsimpedesefficiency.Asinotherindustries,digitaltransformation—includingdigitization,automationandartificial
intelligence/machinelearning—isimprovingefficiency,enhancingpatientexperiencesandunlockingcrucial
insightsacrosshealthcare.Electronicschedulingis
increasinglyavailableforhealth-relatedappointments,
withpatientportalsenablinghealthinformationtobe
self-managed.IntegrationofAIismakingclinicaltrials
moreaccessible,personalizedandtransparent,fosteringpatient-centrictrialenvironmentsandaccelerating
developmentofnewtherapies.
Overall,digitaltransformationhaspotentialtohelp
clinicaltrialtechnologiestobefutureready,bringing
valuetostakeholdersfrompatientsandsitestosponsorcompaniesandCROs.AuthoredbyIQVIAexperts,
thiswhitepaperprovidesahigh-leveloverviewofkey
elementstoconsiderwhendeployingdigitalcapabilitiesinclinicaltrials.
Technologytrendsinclinicaldevelopment
Currenttechnology-enabledtrendsinclinicaldevelopmentinclude:
?Improvingdecisionmaking,enablingfaster,evidence-baseddecisions
?OptimizingR&Dandclinicaltrials,whichincludes
useofdigitalizationandAI/MLinassetidentification,indicationprioritization,studydesignandplanning
andpatientenrollment;patient-centrictrialprocessesusingtelemedicine,wearables,sensorsanddevices;andreducingthepatientandsiteburdeninvolvedinclinicalresearch
?Enhanceddatacollectionandanalysis,including
remotedatacollectionandreviewwithaccessto
sourcedata;centralizedmonitoringofsiteandclinicaldataprocesses;andelectroniccaptureofdatathroughpatient-generateddatamechanisms,suchasePRO
?Streamliningprocesses/collaboration,involving
automationoftrialadministrativetaskstoimproveefficiencyandcompliance;processautomationto
reviewclinicaldatasignalsforearlyidentificationofrisks;andcollaborativedevelopmentofalgorithms
?Creatinginteroperableecosystemsbyimproving
integrationsbetweenclinicalsystemstooptimize
clinicalworkflows;usingcloud-basedplatformsfordatasharingandcollaborationbetweensponsors,
researchers,sitesandCROs;andenablingenhancedsponsoroversight.
|3
DIGITALTRANSFORMATIONDEFINITIONS
Digitalrepresentsusertouchpointsanddataassetsgeneratedfromsystems,computers,andapplications.Examplesofdigital
approachesincludehealth-relatedapps,
electronicdatacapture,wearables,sensors,devices,andoperationalclinicalsystems,
eConsent,ePRO,eCOA,andconnecteddevices.
Digitizationisaboutconvertinganalog
dataintodigitalform(suchasfromapaperdocumenttoaPDFfile).Digitalizationis
aboutusingtechtotransformbusinessprocesses(automatingtasks,etc).
Digitalizationinvolvesusingtechnologytotransformbusinessprocesses.Thisenablesdigitalassetstobemachine-readable,
comprisinganimportantpartofautomation.
Digitaltransformationistheintegrationofdigitaltechnologyintoallareasofa
business,fundamentallychanginghowitoperatesanddeliversvaluetocustomers.
Adigitaloperatingmodelcombines
multipledimensionsthatcollectivelyenabledigitalandtechnologycapabilitiestodeliverdefinedstrategicobjectives.Thisfocuses
onculture,customerjourneys,dataand
analytics,inadditiontothedimensionsofpeople,processandtechnology.
Thebenefitsofdigitalapproachesareillustratedin
Figure1,whichillustrateshow‘digitalnative’companies—wherevaluecreationinproducts,servicesanduserexperienceisbasedondigitaltechnologies—can
outstriptraditionalfirms.Thisisduetothefactthatthevaluethatscaledeliverseventuallytapersoffintraditionaloperatingmodels,butitcanclimbmuchhigherindigitaloperatingmodels.
Figure1:Digitaloperatingmodelstendtooutperformtraditionaloperatingmodels2,3
TraditionaloperatingmodelDigitaloperatingmodel
>
Numbersofusers
ForerunnersofinnovationinthehealthcareecosystemareshowninFigure2.Thesereflectaccelerationin
scientificinnovation,increasinguseofreal-worldevidencetodrivedecision-making,andthefactthatempowered
patientsareengaginginnewways.
“Examplesofdigitalapproaches
includehealth-relatedapps,
electronicdatacapture,wearables,sensors,devices,eConsent,ePRO,eCOA,andconnecteddevices”
4|DigitalTransformation:ANewEraforClinicalTrials
Figure2:Healthcareecosysteminnovationdrivinggrowthandpatientbenefits
Scienti?cinnovationisaccelerating
Real-worldevidenceisdrivingdecision-making
Empoweredpatientsareengaginginnewways
Innovationdrivers
NOVELTHERAPEUTICS
DIGITALPATIENTENGAGEMENT
TELEHEALTH
DIGITALTHERAPEUTICS
Arti?cial
DECISIONSUPPORT
MEDICALDEVICES
Intelligence
CLINICALWORKFLOW
REMOTEMONITORING
Pharmacompaniesareincreasinglyembracingdigital
transformationinanefforttounlockvalue(Figure3).
Currently,40-50%ofpharmacompaniesbenefitfromAI,4withtwooutofthreecompaniesplanningtoinvestmoreinIT.5ThesebenefitsincludethefactthatAIcanpredictbiomolecularstructures,6andAI-designedmolecules
recordphaseIsuccessratesof80-90%,comparedwith55-65%forthosesourcedusingtraditionalapproaches.7
Patientrecruitmentcanbeuptotwotimesfasterwhen
dataandpredictivemodelsareused,8anddecentralizedtrialshavebeenshowntoreducetrialcostsby2-3%,withafour-foldreturnoninvestmentusingmobiletechnology,telehealth,in-homevisitsandotherremoteapproaches.9Finally,useofdigitaloutcomemeasuresincreasesvalue
byprovidingpatientbenefits.10
Figure3:Currentpharmaindustryeffortstounlockvaluethroughdigitaltransformation
Decentralizedtrials
Reducetrialscostby2-3%withROIof4xusingmobiletech,telehealth,in-homevisits,etc.
?40-50%ofpharma
companiesbene?tfromAI
?2of3companiesplantoinvestmoreinIT
Successrate
Cost
Drugdiscovery
PhaseIsuccessrateof80-90%forAIdesignedmoleculesvs55-65%forthetraditionalapproach
Target
identi?cation&validation
>
Compoundscreening
Lead
>identi?cation&
optimization
>
Pre-clinicalstudies
>PhaseItrials
>PhaseIItrials
>PhaseIIItrials
>Regulatoryapproval
>Commercialization
Post-
>marketing
studies
>
Digitaloutcomes
Patientbene?tsusingnoveldigitalendpoints:apps,VR,etc.
Value
Biomolecularstructure
AIe?ortlesslypredicts
structureofproteins,DNA,RNA,ligands,ions,etc.
Volume
Patientrecruitment
Upto2xfasterpatient
recruitmentthroughdata&predictivemodels
Speed
|5
Severalpossibleapproachestoderivingmorevalueforthevariousclinicaltrialstakeholdersusingadigitaloperating
modelareillustratedinFigure4.Whiletraditionalapproacheshavefocusedatfunction-specificandcross-functional
levels,digitaltransformationhasafocusoninteroperabilityandintegrationacrosstheenterpriseand,ultimately,acrossthevaluechain.Advancesareshownfromlefttoright,withfunctionalsilosbeingreimaginedasafullyinterconnected
valuenetwork.
Figure4:Potentialwaystoderivemorevalueforclinicaltrialstakeholders
Functionspeci?cCross-functionalAcrossenterpriseAcrossvalue-network
>
↓
↓
Traditionalstate
Digitaloperationsstate–interoperabilityandintegrationfocus
Designandplanning:Reducing‘whitespace’
Sponsorsareeagertoreducethe‘whitespace’inclinicaldevelopment,definedasthetimetakentotransition
betweenresearchphasesthataffectscostsandtimelines.Earlyengagementwithsponsors,ideallyasmuchas
12monthsbeforestudystartup,canhelpaddressthis.
Benefitstothesponsorincludehavingtheabilitytomakedata-drivenstudydesigndecisions—suchaseligibility
criteriaandscheduleofactivities—basedonananalysisofkeyparameters,includingpatientandsiteburden,
whileaddressingthepotentialconsequencesofthesedecisionsonpatientrecruitmentandsiteparticipation.
Earlyiterativeplanningandbenchmarking
Usingthistimeforearlyiterativeplanningand
benchmarkingcanimprovedecision-makingand
savetimeatlaterstages.Iteratingondesignideasto
assessmultiplescenarioscanhelpsponsorsunderstandtheimpacttheirchoiceswillhavedownstream,providing
earlyinsightintopotentialoperationalrisksandthe
trade-offstoconsider.Forexample,useoftechnologymightimprovepatientparticipationbutwiththetrade-offofincreasingburdensometasksandaddedcosts
atsitelevel.IQVIAhasalibraryofdesignanalytics
andbenchmarksthatcanbeappliedatvariouspointsthroughoutthedesigndevelopmentcontinuum.Theseanalyticsprovideinsightsthatallowsponsorstomakeinformeddecisionsthatsupportprotocoloptimization.Additionally,protocolscanberapidlyassessedand
scoredforcomplexity,patientburdenandsiteburden,
whichgivessponsorsinsightsintowhichdesignelementsmightleadtooperationalchallenges.
6|DigitalTransformation:ANewEraforClinicalTrials
Earlydesignandoperationalplanningenabletheprotocoltobefinalizedattheearliestpossiblestage.Theremay
beoptionsforstreamlining,forexamplebyfocusingonprimaryandsecondaryendpointsandincludingonly
essentialexploratoryendpoints.Fromadatascience
perspective,itisvitaltotaketimeupfronttoidentify
potentialrisksandtoconsiderthebiostatisticalanalysesthatwillberunattheendofthestudytodetermine
factorsthatinfluencethedatacollectionstrategyanddigitalcapabilityselection.
Real-timescenarioplanning
Real-timescenarioplanningisincreasinglybeingusedforclinicaltrialplanning.Thishistoricallyincludedtheuseoftraditionalstatisticalapproaches,suchasMonteCarlo
simulationsforenrollmentratesandotherscenarios.
IQVIA’sstudyplanningandenrollmentoptimization
platformleveragesexpansive,globalreal-worlddataandAItoquicklybuildoptimalenrollmentstrategies.Itallowssponsorstoexplorearangeofscenarioswithenriched
informationaboutthecountriesunderconsiderationfortheirstudy.UsingcontemporarystatisticalmethodsandAI/MLcapabilities,alternativeoptionsaremodeledbasedontimeandcost,includingquickest,lowestcostand
balancedoptions.Representingafundamentalchange
inhowplanningisconducted,thisuseoftechnologyforscenario-baseddecisionmakingoffersarapid,highly-
accurateapproachtoidentifyingtheoptimalcountryandsiteselection,resultinginaclear,conciseplanthatmeetssponsorobjectives.
Asthestudyprogresses,real-timedatasupportsplan
revisionsanddevelopmentofnewprojections,helping
studyteamsgetaheadofpotentialchallengesandcoursecorrectasneeded.Usingtechnologytoconductreal-timeanalysescanaccelerateandinformdecision-making,
helpingmeetsponsorneedsforproactive,agileapproachestotheirstudyfeasibilityandenrollmentstrategies.
“Thereisademandfromsponsors tocompleteactivitieswithincreasedspeedandprecision,withcontinuousdataflowtosupportrapiddetectionoftrendsanddecision-making.”
Demandforreal-timedatafordecision-making
Overall,thereisademandfromsponsorstocompleteactivitieswithincreasedspeedandprecision,with
continuousdataflowtosupportrapiddetectionoftrendsanddecision-making.ThisdemandcanbemetbyIQVIA
digitalplatformsandapplicationsthatprovideautomationandconnectivity.Thereisalsoageneralshiftawayfrom
siteentereddata,likeelectronicdatacapture(EDC),infavorofpatientreporteddatafromconnecteddevicesandelectronicclinicaloutcomeassessment(eCOA),
whicheliminateslosttimewaitingfortranscription.Dataintegrationsautomaticallyfeeddatafromalldatasourcesintoadatarepositoryforaggregation.Asdataupdates,
itisautomaticallyconnectedtothedigitaloperationalprocesses,enablingcreationofcontinuously-updatedoversightdashboardsfortrialmanagement.
Digitizationeliminatestheneedformanualreviews,
reconciliationsandlogs,furtherimprovingtheway
dataflowsintheecosystemtoenableimprovementsindownstreamprocesses,suchasqualitymanagement,
compliancereviewofsites,patientsignaldetection,dataqualityissuesanddatamanagement.
|7
Needforincreasedsitesupport
Therehasbeenaproliferationinthenumberofsite-facingtechnologiesinrecentyears.Fromtechnologystrategy
andadoptionperspectives,theseposechallengesforsiteengagementandsiteenablement.Thereisaneedforsitesupportto:
?Reducetheadministrativeburdenforsitesandthus
improvesiteengagementfordocumentmanagementsystems.IQVIAofferselectronicinvestigatorsitefile
implementation,eBindersandeLogs.Thishelpsreducetheburdenofmanagingessentialdocumentsatthe
site,replacingpaperrecordswithdigitalones.
?Simplifycollectionofpatient-generateddataviaDigitalHealthTechnologies:thesensors,wearablesandotherdevicesthathavebeenavailablefor
sometimewithusagefurtherexpandedduringtheCOVID-19pandemic.
?ClarifyaneSourcestrategytohelpmakeavailable
offlinesystemswheredatacanbecollectedinan
asynchronousmannerandflowsintosystemsthroughintegrationmechanisms.
?Implementcentralmonitoringcapabilitiesin
responsetoincreasinguseofremotetechnologiesinclinicaltrials.Digitaltoolsarebeingdeployed,suchasplatformsformonitorsthatprovidemobilesitevisit
reportsandenablemobileinvestigationalproduct
managementthroughsimpleapplicationinterfaces
onhand-helddevicessuchastabletsandphones.Thisishelpingmeetuserswheretheyareinthisdigital
landscape.
Digitalizationofdataflowenablesfasterinsights
DigitalizationisresultinginvastincreasesintheavailabilityofpatientdatafromeSource(datacapturedelectronically),devices,andeCOA.TherearefourkeycomponentsusedatIQVIAtostreamlinedataflow:11
1.Digitization,whichfocusesoncreationofdigitaldataassets.Thiscanbedonebycompletingoperational
processesinadigitalworkflowapplication,suchas
thereviewofdataissues.Digitaldataassetsmay
alsobecreatedbydigitalizationofPDFs,hand-writtennotesandnaturallanguagenarratives,whichcreate
adigitalassetevenwhenamanualprocessisutilized.Thesearetransformedintodigitalassetsthatcanbeformatted,cleaned,andmergedwithotherdata.
2.Centralization,whichinvolvesstoringalldataina
warehouseordatalake,providingasinglerepository
foralldataassets.Thisstepstreamlinesdata
acquisition,appliesrigortodatacleaningandhandling,andeaseseffortsbyteamsacrossanorganizationto
usethesameresourcestosupportdecisions.
3.Standardization,whichrespondstotheexistenceof
assetsinmultiple,oftenunstructured,formats,suchasdoctors’notes,customerservicetasks,audiofiles
andimages.Theseformatsoftenapplydifferentrules,codesandnamingconventions.Fortheseassetstobecombinedandanalyzedasinglesetofbusinessrulesmustbeappliedbasedonenduserfeedback.
4.Automation,whichusesAI/MLtointerpretthe
dataandstreamlinedataflowandprocessesfrom
acquisitiontofinalanalysis.Thisenablesend-userstoquerydataassetswithdetailedquestionsandfollow-upsthatgeneratenearreal-timeresults.
5.Patienttokenization,whichanonymouslylinks
multipledisparatedatasetstogetheratthepatientlevel,providingmanufacturerswiththemost
comprehensiveviewofthepatientjourneywhilemaintainingaminimumriskofre-identification.
Callforcommondatamodelsandstandards
Clinicalresearchlacksstandarddefinitions,makingit
difficulttocreatescalable,digitaltransformation.There
areincreasingcallsfortheclinicalresearchsectortomovetowardcommondatamodels,buildingonlearningsfrom
8|DigitalTransformation:ANewEraforClinicalTrials
initiativessuchastheClinicalDataInterchangeStandardsConsortium(CDISC)studydatatabulationmodel(SDTM).Therehasalreadybeeninfrastructureinvestmentin
buildingcommondatamodels,aswellasbuildingend-
usertoolstoleveragedatarepositories,butmoreprogressisneeded.
Variousconsortiacontinuetoworkonstandards.
Thestandardscanoffermajorbenefits,including
improveddatacleaninginclinicaldatamanagement.
Somecompaniesarecustomizingthesestandardsto
achieveinnovation.Customizationandstandardizationshouldbebalancedtogaintheadvantagesofboth.
Lookingahead,AI/MLcanbeusedforstandardizedactivities,whilemanualeffortsarefocusedwhere
customizationorcustomAIsolutionsareneeded.
Animportantpieceofdigitaltransformationinvolves
continuousprocessesanddataflowtocreatebetter
insightsandprocesses.Whenthedataisflowingandalloperationalworkisinadigitalapplication,allelements
areconnected,enablingvisibilityintoongoingworkvia
dashboards.OneexampleisIQVIA’sCleanPatientTrackerdashboard,designedtogiveanoverviewofdatacleaningstatus,providinginsightsatproject,country,site,and
subjectlevel.Thisincludesadashboardtorapidlyidentifyissuesandtrends.
Remainingbottlenecks
Severalbottlenecksremain.Clinicaltrialsareincreasing
incomplexity,andtheamountofdatacollectedisrising.Forexample,infunctionaloutsourcingagreementswithmultipleCROs,inefficienciescanarisewhenvarious
elements–suchasdatamanagementorcentralized
monitoring–areeachoutsourcedtoadifferentCRO.Thisapproachrequiresconsiderableeffortforcoordination,
sometimesreferredtoasa‘collaborationtax.’Insome
situations,itcanworkbettertouseafull-serviceCROwithefficientprocessesthatareconnectedfromstarttofinish.Sometimes,creativesolutionsarerequired,suchasAPIsandjointaccessplatforms.
Industry-wideadoptionisanotherchallenge.Progress
isoftenmeasuredintermsoftheabilitytobuildanew
processandputitrapidlyintooperation,withadjustmentsbeingmadelater.Trulyeffectivechangedependson
alteringhowteammemberswork,withcarefulplanningtoreduceriskovertime—anapproachthattakeslongerupfrontandrequirespatience.
Conclusion
Lookingahead,IQVIAwillcontinueadvancingdigitaltransformationforsponsorswithleading-edgeAI/
MLsolutions.Thesesolutions(Figure5)willrapidly
navigatethevastvolumesofvariedindustry-specific
data,improvingclinicaltrialefficiencyandaccelerating
innovation.WithHealthcare-gradeAI,dataanalystswillincreasinglybeabletodiscoverpatternsandconnectionswithinandbetweendatasets,informingidentification
ofthenextbestactionforthetrialprocess.Usingtheseapproaches,dataanalystswillincreasinglybeableto
enhanceefficiencybyunravelingdatacomplexity,drivingactionableoutcomesandenhancingdecision-making.
Digitaloperatingmodelswillprovidecapabilitiesto
helpmeetsponsordemandstominimizethe‘white
space’intheclinicaldevelopmentprocess.Increased
automationandconnectivitywilladvancecontinuously-updatedoversightdashboardsforstudymanagement–protectingpatientsafetywhilepotentiallyreducing
clinicaldevelopmenttimelines.
Figure5:Afuturemodelfordigitaltransformationinclinicaltrials12
Healthcare,lifescience,
AIexpertise
Optimized
AI
models
AIinfra-Bench-
structuremarked
Cleansedandscrubbed
Precision
and
diversity
Domainexpertise
PrivacyandSecurity
Geographiccoverage
Regulatorycompliance
and
AdaptableAI
Unparalleled
quality
healthdata
|9
References
1.EasyM.TransformingClinicalTrialWorkflowswithAI.IQVIAblog.February22,2024.
/blogs/2024/02/transforming-clinical-trial-workflows-with-ai
2.DefinitionsfromonlinesourcesincludingMcKinsey,Accenture,HarvardBusinessSchool,Gartner,MIT
3.IansitiM,LakhaniKR.CompetingintheAgeofAI:StrategyandLeadershipWhenAlgorithmsandNetworksRuntheWorld.Book.2020.
/faculty/Pages/item.aspx?num=56633
4.Bain&Companypressrelease.40%ofpharmaexecutivesarebakingexpectedsavingsfromGenerativeAIinto2024budgets.February12,2024.
/about/media-center/press-releases/2024/40-
of-pharma-executives-are-baking-expected-savings-from-generative-ai-into-2024-budgets/
5.BuntzB.Two-thirdsofpharmacompaniesplantoupITinvestmentsin2024,surveyfinds.DrugDiscover
Trends.December14,2023.
/two-thirds-of-pharma-companies-plan-
to-up-it-investments-in-2024-survey-finds/
6.Googleblog.AlphaFold3predictsthestructureandinteractionsofalloflife’smolecules.May8,2024.
https://blog.google/technology/ai/google-deepmind-isomorphic-alphafold-3-ai-model/
7.JayatungaMKp,AyersM,BruensL,JayanthD,MeierC.HowsuccessfulareAI-discovereddrugsinclinical
trials?Afirstanalysisandemerginglessons.DrugDiscovToday.2024Jun;29(6):104009.doi:10.1016/j.
drudis.2024.104009.Epub2024Apr30.PMID:38692505.
/science/article/pii/
S135964462400134X
8.BuntzB.InsideAmgen’sATOMICstrategytouseMLtoaccelerateclinicaltrials.January24,2024.
/amgen-atomic-clinical-trials-ml/
9.DiMasiJA,SmithZ,Oakley-GirvanI,MackinnonA,CostelloM,TenaertsP,GetzKA.AssessingtheFinancial
ValueofDecentralizedClinicalTrials.TherInnovRegulSci.2023Mar;57(2):209-219.doi:10.1007/s43441-022-00454-5.Epub2022Sep14.PMID:36104654;PMCID:PMC9473466.
/articles/
PMC9473466/
10.DiMasiJA,DirksA,SmithZ,ValentineS,GoldsackJC,MetcalfeT,GrewalU,LeyensL,ConradiU,KarlinD,
MaloneyL,GetzKA,HartogB.Assessingthenetfinancialbenefitsofemployingdigitalendpointsinclinicaltrials.ClinTranslSci.2024Aug;17(8):e13902.doi:10.1111/cts.13902.PMID:39072949;PMCID:PMC11284240.
/39072949/
11.MayerT,SteffenS,JacksonD.ControlYourDataFlow,ControlYourTrial.IQVIAWhitePaper.August2022.
/library/white-papers/control-your-data-flow-control-your-trial
12.IQVIAwebpage.AIYouCanTrust.IntroducingIQVIAHealthcare-GradeAI?.
/
solutions/innovative-models/artificial-intelligence-and-machine-learning
13.IQVIAwebpage.Maketherightconnections.
/about-us/iqvia-connected-intelligence
10|DigitalTransformation:ANewEraforClinicalTrials
Abouttheauthors
NATALIAKOTCHIE
SeniorVicePresident,AppliedDataScienceCenter
NataliaKotchieleadstheIQVIA
AppliedDataScienceCenter(ADSC)forR&DSolutions.TheADSCteam–comprising200+
datascientists,analytic,andfeasibilityexperts,across
NorthandSouthAmerica,Europe,andAsiaPacific–
createsdatainsightsandsupportstheirtranslation
tooperationstodriveimpactonstudies.Priortoher
currentrole,Natalia
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年家具個(gè)性化定制生產(chǎn)模式下的定制家具行業(yè)政策法規(guī)解讀研究報(bào)告
- 深入理解網(wǎng)絡(luò)拓?fù)渑c試題及答案
- 西方民主制度的可持續(xù)性探討試題及答案
- 2025年金融行業(yè)數(shù)據(jù)治理:數(shù)據(jù)治理技術(shù)在數(shù)據(jù)可視化中的應(yīng)用報(bào)告001
- 政策響應(yīng)機(jī)制對(duì)公共危機(jī)管理的影響試題及答案
- 軟件設(shè)計(jì)師考試常用工具介紹及試題與答案
- 項(xiàng)目管理師考前心態(tài)調(diào)整試題及答案
- 全新2025年軟件設(shè)計(jì)師考試大綱的試題及答案
- 機(jī)電工程設(shè)計(jì)優(yōu)化的重要性試題及答案
- 2025年汽車零部件再制造產(chǎn)業(yè)政策環(huán)境與市場(chǎng)機(jī)遇分析報(bào)告
- 《髖關(guān)節(jié)鏡手術(shù)患者》課件
- 浙江開放大學(xué)2025年《社會(huì)保障學(xué)》形考任務(wù)3答案
- 2025年浙江省寧波市一??茖W(xué)試卷
- 2024三相智能電能表技術(shù)規(guī)范
- 2025年廣東省數(shù)學(xué)九年級(jí)中考三輪復(fù)習(xí)壓軸題:相似與幾何綜合練習(xí)
- 2024-2025學(xué)年人教版八年級(jí)下冊(cè)期末數(shù)學(xué)質(zhì)量檢測(cè)試卷(含答案)
- 江蘇省南通市合作盟校2025年高考化學(xué)四模試卷含解析
- 猴痘防控方案培訓(xùn)課件
- 新版GSP《醫(yī)療器械經(jīng)營(yíng)質(zhì)量管理規(guī)范》培訓(xùn)試題
- 新版2025心肺復(fù)蘇術(shù)指南
- DB45T 1056-2014 土地整治工程 第2部分:質(zhì)量檢驗(yàn)與評(píng)定規(guī)程
評(píng)論
0/150
提交評(píng)論