2025屆山東省山師附中高考數(shù)學(xué)二模試卷含解析_第1頁
2025屆山東省山師附中高考數(shù)學(xué)二模試卷含解析_第2頁
2025屆山東省山師附中高考數(shù)學(xué)二模試卷含解析_第3頁
2025屆山東省山師附中高考數(shù)學(xué)二模試卷含解析_第4頁
2025屆山東省山師附中高考數(shù)學(xué)二模試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆山東省山師附中高考數(shù)學(xué)二模試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),若不等式對任意的恒成立,則實數(shù)k的取值范圍是()A. B. C. D.2.3本不同的語文書,2本不同的數(shù)學(xué)書,從中任意取出2本,取出的書恰好都是數(shù)學(xué)書的概率是()A. B. C. D.3.已知等式成立,則()A.0 B.5 C.7 D.134.已知函數(shù)的圖像向右平移個單位長度后,得到的圖像關(guān)于軸對稱,,當(dāng)取得最小值時,函數(shù)的解析式為()A. B.C. D.5.已知函數(shù)的導(dǎo)函數(shù)為,記,,…,N.若,則()A. B. C. D.6.一個幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B. C. D.847.已知正項數(shù)列滿足:,設(shè),當(dāng)最小時,的值為()A. B. C. D.8.如圖所示,正方體的棱,的中點分別為,,則直線與平面所成角的正弦值為()A. B. C. D.9.已知函數(shù)滿足,設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.若函數(shù),在區(qū)間上任取三個實數(shù),,均存在以,,為邊長的三角形,則實數(shù)的取值范圍是()A. B. C. D.11.運行如圖所示的程序框圖,若輸出的的值為99,則判斷框中可以填()A. B. C. D.12.拋物線的焦點為,準(zhǔn)線為,,是拋物線上的兩個動點,且滿足,設(shè)線段的中點在上的投影為,則的最大值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.將函數(shù)的圖象向右平移個單位長度后得到函數(shù)的圖象,則函數(shù)的最大值為______.14.下圖是一個算法流程圖,則輸出的的值為__________.15.已知函數(shù)f(x)=若關(guān)于x的方程f(x)=kx有兩個不同的實根,則實數(shù)k的取值范圍是________.16.若為假,則實數(shù)的取值范圍為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)a,b,c分別為△ABC內(nèi)角A,B,C的對邊.已知a=3,,且B=60°.(1)求△ABC的面積;(2)若D,E是BC邊上的三等分點,求.18.(12分)已知某種細(xì)菌的適宜生長溫度為12℃~27℃,為了研究該種細(xì)菌的繁殖數(shù)量(單位:個)隨溫度(單位:℃)變化的規(guī)律,收集數(shù)據(jù)如下:溫度/℃14161820222426繁殖數(shù)量/個2530385066120218對數(shù)據(jù)進(jìn)行初步處理后,得到了一些統(tǒng)計量的值,如表所示:20784.11123.8159020.5其中,.(1)請繪出關(guān)于的散點圖,并根據(jù)散點圖判斷與哪一個更適合作為該種細(xì)菌的繁殖數(shù)量關(guān)于溫度的回歸方程類型(給出判斷即可,不必說明理由);(2)根據(jù)(1)的判斷結(jié)果及表格數(shù)據(jù),建立關(guān)于的回歸方程(結(jié)果精確到0.1);(3)當(dāng)溫度為27℃時,該種細(xì)菌的繁殖數(shù)量的預(yù)報值為多少?參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二成估計分別為,,參考數(shù)據(jù):.19.(12分)已知,,分別為內(nèi)角,,的對邊,且.(1)證明:;(2)若的面積,,求角.20.(12分)已知等差數(shù)列和等比數(shù)列的各項均為整數(shù),它們的前項和分別為,且,.(1)求數(shù)列,的通項公式;(2)求;(3)是否存在正整數(shù),使得恰好是數(shù)列或中的項?若存在,求出所有滿足條件的的值;若不存在,說明理由.21.(12分)已知的內(nèi)角、、的對邊分別為、、,滿足.有三個條件:①;②;③.其中三個條件中僅有兩個正確,請選出正確的條件完成下面兩個問題:(1)求;(2)設(shè)為邊上一點,且,求的面積.22.(10分)在平面直角坐標(biāo)系中,以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位.已知直線l的參數(shù)方程為(t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=4sin(θ+).(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;(2)若直線l與曲線C交于M,N兩點,求△MON的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

先求出函數(shù)在處的切線方程,在同一直角坐標(biāo)系內(nèi)畫出函數(shù)和的圖象,利用數(shù)形結(jié)合進(jìn)行求解即可.【詳解】當(dāng)時,,所以函數(shù)在處的切線方程為:,令,它與橫軸的交點坐標(biāo)為.在同一直角坐標(biāo)系內(nèi)畫出函數(shù)和的圖象如下圖的所示:利用數(shù)形結(jié)合思想可知:不等式對任意的恒成立,則實數(shù)k的取值范圍是.故選:A【點睛】本題考查了利用數(shù)形結(jié)合思想解決不等式恒成立問題,考查了導(dǎo)數(shù)的應(yīng)用,屬于中檔題.2、D【解析】

把5本書編號,然后用列舉法列出所有基本事件.計數(shù)后可求得概率.【詳解】3本不同的語文書編號為,2本不同的數(shù)學(xué)書編號為,從中任意取出2本,所有的可能為:共10個,恰好都是數(shù)學(xué)書的只有一種,∴所求概率為.故選:D.【點睛】本題考查古典概型,解題方法是列舉法,用列舉法寫出所有的基本事件,然后計數(shù)計算概率.3、D【解析】

根據(jù)等式和特征和所求代數(shù)式的值的特征用特殊值法進(jìn)行求解即可.【詳解】由可知:令,得;令,得;令,得,得,,而,所以.故選:D【點睛】本題考查了二項式定理的應(yīng)用,考查了特殊值代入法,考查了數(shù)學(xué)運算能力.4、A【解析】

先求出平移后的函數(shù)解析式,結(jié)合圖像的對稱性和得到A和.【詳解】因為關(guān)于軸對稱,所以,所以,的最小值是.,則,所以.【點睛】本題主要考查三角函數(shù)的圖像變換及性質(zhì).平移圖像時需注意x的系數(shù)和平移量之間的關(guān)系.5、D【解析】

通過計算,可得,最后計算可得結(jié)果.【詳解】由題可知:所以所以猜想可知:由所以所以故選:D【點睛】本題考查導(dǎo)數(shù)的計算以及不完全歸納法的應(yīng)用,選擇題、填空題可以使用取特殊值,歸納猜想等方法的使用,屬中檔題.6、B【解析】

畫出幾何體的直觀圖,計算表面積得到答案.【詳解】該幾何體的直觀圖如圖所示:故.故選:.【點睛】本題考查了根據(jù)三視圖求表面積,意在考查學(xué)生的計算能力和空間想象能力.7、B【解析】

由得,即,所以得,利用基本不等式求出最小值,得到,再由遞推公式求出.【詳解】由得,即,,當(dāng)且僅當(dāng)時取得最小值,此時.故選:B【點睛】本題主要考查了數(shù)列中的最值問題,遞推公式的應(yīng)用,基本不等式求最值,考查了學(xué)生的運算求解能力.8、C【解析】

以D為原點,DA,DC,DD1分別為軸,建立空間直角坐標(biāo)系,由向量法求出直線EF與平面AA1D1D所成角的正弦值.【詳解】以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,設(shè)正方體ABCD﹣A1B1C1D1的棱長為2,則,,,取平面的法向量為,設(shè)直線EF與平面AA1D1D所成角為θ,則sinθ=|,直線與平面所成角的正弦值為.故選C.【點睛】本題考查了線面角的正弦值的求法,也考查數(shù)形結(jié)合思想和向量法的應(yīng)用,屬于中檔題.9、B【解析】

結(jié)合函數(shù)的對應(yīng)性,利用充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】解:若,則,即成立,若,則由,得,則“”是“”的必要不充分條件,故選:B.【點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合函數(shù)的對應(yīng)性是解決本題的關(guān)鍵,屬于基礎(chǔ)題.10、D【解析】

利用導(dǎo)數(shù)求得在區(qū)間上的最大值和最小,根據(jù)三角形兩邊的和大于第三邊列不等式,由此求得的取值范圍.【詳解】的定義域為,,所以在上遞減,在上遞增,在處取得極小值也即是最小值,,,,,所以在區(qū)間上的最大值為.要使在區(qū)間上任取三個實數(shù),,均存在以,,為邊長的三角形,則需恒成立,且,也即,也即當(dāng)、時,成立,即,且,解得.所以的取值范圍是.故選:D【點睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的最值,考查恒成立問題的求解,屬于中檔題.11、C【解析】

模擬執(zhí)行程序框圖,即可容易求得結(jié)果.【詳解】運行該程序:第一次,,;第二次,,;第三次,,,…;第九十八次,,;第九十九次,,,此時要輸出的值為99.此時.故選:C.【點睛】本題考查算法與程序框圖,考查推理論證能力以及化歸轉(zhuǎn)化思想,涉及判斷條件的選擇,屬基礎(chǔ)題.12、B【解析】

試題分析:設(shè)在直線上的投影分別是,則,,又是中點,所以,則,在中,所以,即,所以,故選B.考點:拋物線的性質(zhì).【名師點晴】在直線與拋物線的位置關(guān)系問題中,涉及到拋物線上的點到焦點的距離,焦點弦長,拋物線上的點到準(zhǔn)線(或與準(zhǔn)線平行的直線)的距離時,常??紤]用拋物線的定義進(jìn)行問題的轉(zhuǎn)化.象本題弦的中點到準(zhǔn)線的距離首先等于兩點到準(zhǔn)線距離之和的一半,然后轉(zhuǎn)化為兩點到焦點的距離,從而與弦長之間可通過余弦定理建立關(guān)系.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由三角函數(shù)圖象相位變換后表達(dá)函數(shù)解析式,再利用三角恒等變換與輔助角公式整理的表達(dá)式,進(jìn)而由三角函數(shù)值域求得最大值.【詳解】將函數(shù)的圖象向右平移個單位長度后得到函數(shù)的圖象,則所以,當(dāng)函數(shù)最大,最大值為故答案為:【點睛】本題考查表示三角函數(shù)圖象平移后圖象的解析式,還考查了利用三角恒等變換化簡函數(shù)式并求最值,屬于簡單題.14、3【解析】

分析程序中各變量、各語句的作用,根據(jù)流程圖所示的順序,即可得出結(jié)論.【詳解】解:初始,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):;經(jīng)判斷,此時跳出循環(huán),輸出.故答案為:【點睛】本題考查了程序框圖的應(yīng)用問題,解題的關(guān)鍵是對算法語句的理解,屬基礎(chǔ)題.15、【解析】由圖可知,當(dāng)直線y=kx在直線OA與x軸(不含它們)之間時,y=kx與y=f(x)的圖像有兩個不同交點,即方程有兩個不相同的實根.16、【解析】

由為假,可知為真,所以對任意實數(shù)恒成立,求出的最小值,令即可.【詳解】因為為假,則其否定為真,即為真,所以對任意實數(shù)恒成立,所以.又,當(dāng)且僅當(dāng),即時,等號成立,所以.故答案為:.【點睛】本題考查全稱命題與特稱命題間的關(guān)系的應(yīng)用,利用參變分離是解決本題的關(guān)鍵,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)根據(jù)正弦定理,可得△ABC為直角三角形,然后可計算b,可得結(jié)果.(2)計算,然后根據(jù)余弦定理,可得,利用平方關(guān)系,可得結(jié)果.【詳解】(1)△ABC中,由csinC=asinA+bsinB,利用正弦定理得c2=a2+b2,所以△ABC是直角三角形.又a=3,B=60°,所以;所以△ABC的面積為.(2)設(shè)D靠近點B,則BD=DE=EC=1.,所以所以.【點睛】本題考查正弦定理的應(yīng)用,屬基礎(chǔ)題.18、(1)作圖見解析;更適合(2)(3)預(yù)報值為245【解析】

(1)由散點圖即可得到答案;(2)把兩邊取自然對數(shù),得,由計算得到,再將代入可得,最終求得,即;(3)將代入中計算即可.【詳解】解:(1)繪出關(guān)于的散點圖,如圖所示:由散點圖可知,更適合作為該種細(xì)菌的繁殖數(shù)量關(guān)于的回歸方程類型;(2)把兩邊取自然對數(shù),得,即,由.∴,則關(guān)于的回歸方程為;(3)當(dāng)時,計算可得;即溫度為27℃時,該種細(xì)菌的繁殖數(shù)量的預(yù)報值為245.【點睛】本題考查求非線性回歸方程及其應(yīng)用的問題,考查學(xué)生數(shù)據(jù)處理能力及運算能力,是一道中檔題.19、(1)見解析;(2)【解析】

(1)利用余弦定理化簡已知條件,由此證得(2)利用正弦定理化簡(1)的結(jié)論,得到,利用三角形的面積公式列方程,由此求得,進(jìn)而求得的值,從而求得角.【詳解】(1)由已知得,由余弦定理得,∴.(2)由(1)及正弦定理得,即,∴,∴,∴.,∴,,.【點睛】本小題主要考查余弦定理、正弦定理解三角形,考查三角形的面積公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查運算求解能力,屬于中檔題.20、(1);(2);(3)存在,1.【解析】

(1)利用基本量法直接計算即可;(2)利用錯位相減法計算;(3),令可得,,討論即可.【詳解】(1)設(shè)數(shù)列的公差為,數(shù)列的公比為,因為,所以,即,解得,或(舍去).所以.(2),,所以,所以.(3)由(1)可得,,所以.因為是數(shù)列或中的一項,所以,所以,因為,所以,又,則或.當(dāng)時,有,即,令.則.當(dāng)時,;當(dāng)時,,即.由,知無整數(shù)解.當(dāng)時,有,即存在使得是數(shù)列中的第2項,故存在正整數(shù),使得是數(shù)列中的項.【點睛】本題考查數(shù)列的綜合應(yīng)用,涉及到等差、等比數(shù)列的通項,錯位相減法求數(shù)列的前n項和,數(shù)列中的存在性問題,是一道較為綜合的題.21、(1);(2).【解析】

(1)先求出角,進(jìn)而可得出,則①②中有且只有一個正確,③正確,然后分①③正確和②③正確兩種情況討論,結(jié)合三角形的面積公式和余弦定理可求得的值;(2)計算出和,計算出,可得出,進(jìn)而可求得的面積.【詳解】(1)因為,所以,得,,,為鈍角,與矛盾,故①②中僅有一個正確,③正確.顯然,得.當(dāng)①③正確時,由,得(無解);當(dāng)②③正確時,由于,,得;(2)如圖,因為,,則,則,.【點睛】本題考查解三角形綜合應(yīng)用,涉及三角形面積公式和余弦定理的應(yīng)用,考查計算能力,屬于中等題.22、(1)直線l的普通方程為x+y-4=0.曲線C的直角坐標(biāo)方程是圓:(x-)2+(y-1)2=4.(2)4【解析】

(1)將直線l參數(shù)方程中的消去,即可得直線l的普通方程,對曲線C的極坐標(biāo)方程兩邊同時乘以,利用可得曲線C的直角坐標(biāo)方程;(2)求出點到直線的距離,再求出的弦長,從而得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論