




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省部分省級示范性重點中學2025年高三下學期期末質量調查數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《周易》是我國古代典籍,用“卦”描述了天地世間萬象變化.如圖是一個八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個爻組成,其中“”表示一個陽爻,“”表示一個陰爻).若從含有兩個及以上陽爻的卦中任取兩卦,這兩卦的六個爻中都恰有兩個陽爻的概率為()A. B. C. D.2.已知函數,,且,則()A.3 B.3或7 C.5 D.5或83.若的二項展開式中的系數是40,則正整數的值為()A.4 B.5 C.6 D.74.已知復數,其中為虛數單位,則()A. B. C.2 D.5.在直角坐標系中,已知A(1,0),B(4,0),若直線x+my﹣1=0上存在點P,使得|PA|=2|PB|,則正實數m的最小值是()A. B.3 C. D.6.不等式的解集記為,有下面四個命題:;;;.其中的真命題是()A. B. C. D.7.已知函數,若關于的方程恰好有3個不相等的實數根,則實數的取值范圍為()A. B. C. D.8.若實數滿足不等式組,則的最大值為()A. B. C.3 D.29.已知α,β是兩平面,l,m,n是三條不同的直線,則不正確命題是()A.若m⊥α,n//α,則m⊥n B.若m//α,n//α,則m//nC.若l⊥α,l//β,則α⊥β D.若α//β,lβ,且l//α,則l//β10.已知分別為雙曲線的左、右焦點,過的直線與雙曲線的左、右兩支分別交于兩點,若,則雙曲線的離心率為()A. B.4 C.2 D.11.設是虛數單位,復數()A. B. C. D.12.在棱長為a的正方體中,E、F、M分別是AB、AD、的中點,又P、Q分別在線段、上,且,設平面平面,則下列結論中不成立的是()A.平面 B.C.當時,平面 D.當m變化時,直線l的位置不變二、填空題:本題共4小題,每小題5分,共20分。13.設函數滿足,且當時,又函數,則函數在上的零點個數為___________.14.設為拋物線的焦點,為上互相不重合的三點,且、、成等差數列,若線段的垂直平分線與軸交于,則的坐標為_______.15.已知數列與均為等差數列(),且,則______.16.拋物線的焦點坐標為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,直線的參數方程為(為參數),以原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(Ⅰ)設直線與曲線交于,兩點,求;(Ⅱ)若點為曲線上任意一點,求的取值范圍.18.(12分)已知函數(1)若對任意恒成立,求實數的取值范圍;(2)求證:19.(12分)在直角坐標平面中,已知的頂點,,為平面內的動點,且.(1)求動點的軌跡的方程;(2)設過點且不垂直于軸的直線與交于,兩點,點關于軸的對稱點為,證明:直線過軸上的定點.20.(12分)如圖,在正四棱柱中,,,過頂點,的平面與棱,分別交于,兩點(不在棱的端點處).(1)求證:四邊形是平行四邊形;(2)求證:與不垂直;(3)若平面與棱所在直線交于點,當四邊形為菱形時,求長.21.(12分)已知,均為正項數列,其前項和分別為,,且,,,當,時,,.(1)求數列,的通項公式;(2)設,求數列的前項和.22.(10分)設函數.(1)當時,求不等式的解集;(2)若對任意都有,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
基本事件總數為個,都恰有兩個陽爻包含的基本事件個數為個,由此求出概率.【詳解】解:由圖可知,含有兩個及以上陽爻的卦有巽、離、兌、乾四卦,取出兩卦的基本事件有(巽,離),(巽,兌),(巽,乾),(離,兌),(離,乾),(兌,乾)共個,其中符合條件的基本事件有(巽,離),(巽,兌),(離,兌)共個,所以,所求的概率.故選:B.【點睛】本題滲透傳統(tǒng)文化,考查概率、計數原理等基本知識,考查抽象概括能力和應用意識,屬于基礎題.2.B【解析】
根據函數的對稱軸以及函數值,可得結果.【詳解】函數,若,則的圖象關于對稱,又,所以或,所以的值是7或3.故選:B.【點睛】本題考查的是三角函數的概念及性質和函數的對稱性問題,屬基礎題3.B【解析】
先化簡的二項展開式中第項,然后直接求解即可【詳解】的二項展開式中第項.令,則,∴,∴(舍)或.【點睛】本題考查二項展開式問題,屬于基礎題4.D【解析】
把已知等式變形,然后利用數代數形式的乘除運算化簡,再由復數模的公式計算得答案.【詳解】解:,則.故選:D.【點睛】本題考查了復數代數形式的乘除運算,考查了復數模的求法,是基礎題.5.D【解析】
設點,由,得關于的方程.由題意,該方程有解,則,求出正實數m的取值范圍,即求正實數m的最小值.【詳解】由題意,設點.,即,整理得,則,解得或..故選:.【點睛】本題考查直線與方程,考查平面內兩點間距離公式,屬于中檔題.6.A【解析】
作出不等式組表示的可行域,然后對四個選項一一分析可得結果.【詳解】作出可行域如圖所示,當時,,即的取值范圍為,所以為真命題;為真命題;為假命題.故選:A【點睛】此題考查命題的真假判斷與應用,著重考查作圖能力,熟練作圖,正確分析是關鍵,屬于中檔題.7.D【解析】
討論,,三種情況,求導得到單調區(qū)間,畫出函數圖像,根據圖像得到答案.【詳解】當時,,故,函數在上單調遞增,在上單調遞減,且;當時,;當時,,,函數單調遞減;如圖所示畫出函數圖像,則,故.故選:.【點睛】本題考查了利用導數求函數的零點問題,意在考查學生的計算能力和應用能力.8.C【解析】
作出可行域,直線目標函數對應的直線,平移該直線可得最優(yōu)解.【詳解】作出可行域,如圖由射線,線段,射線圍成的陰影部分(含邊界),作直線,平移直線,當過點時,取得最大值1.故選:C.【點睛】本題考查簡單的線性規(guī)劃問題,解題關鍵是作出可行域,本題要注意可行域不是一個封閉圖形.9.B【解析】
根據線面平行、線面垂直和空間角的知識,判斷A選項的正確性.由線面平行有關知識判斷B選項的正確性.根據面面垂直的判定定理,判斷C選項的正確性.根據面面平行的性質判斷D選項的正確性.【詳解】A.若,則在中存在一條直線,使得,則,又,那么,故正確;B.若,則或相交或異面,故不正確;C.若,則存在,使,又,則,故正確.D.若,且,則或,又由,故正確.故選:B【點睛】本小題主要考查空間線線、線面和面面有關命題真假性的判斷,屬于基礎題.10.A【解析】
由已知得,,由已知比值得,再利用雙曲線的定義可用表示出,,用勾股定理得出的等式,從而得離心率.【詳解】.又,可令,則.設,得,即,解得,∴,,由得,,,該雙曲線的離心率.故選:A.【點睛】本題考查求雙曲線的離心率,解題關鍵是由向量數量積為0得出垂直關系,利用雙曲線的定義把雙曲線上的點到焦點的距離都用表示出來,從而再由勾股定理建立的關系.11.D【解析】
利用復數的除法運算,化簡復數,即可求解,得到答案.【詳解】由題意,復數,故選D.【點睛】本題主要考查了復數的除法運算,其中解答中熟記復數的除法運算法則是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.12.C【解析】
根據線面平行與垂直的判定與性質逐個分析即可.【詳解】因為,所以,因為E、F分別是AB、AD的中點,所以,所以,因為面面,所以.選項A、D顯然成立;因為,平面,所以平面,因為平面,所以,所以B項成立;易知平面MEF,平面MPQ,而直線與不垂直,所以C項不成立.故選:C【點睛】本題考查直線與平面的位置關系.屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
判斷函數為偶函數,周期為2,判斷為偶函數,計算,,畫出函數圖像,根據圖像到答案.【詳解】知,函數為偶函數,,函數關于對稱。,故函數為周期為2的周期函數,且。為偶函數,,,當時,,,函數先增后減。當時,,,函數先增后減。在同一坐標系下作出兩函數在上的圖像,發(fā)現(xiàn)在內圖像共有1個公共點,則函數在上的零點個數為1.故答案為:.【點睛】本題考查了函數零點問題,確定函數的奇偶性,對稱性,周期性,畫出函數圖像是解題的關鍵.14.或【解析】
設出三點的坐標,結合等差數列的性質、線段垂直平分線的性質、拋物線的定義進行求解即可.【詳解】拋物線的準線方程為:,設,由拋物線的定義可知:,,,因為、、成等差數列,所以有,所以,因為線段的垂直平分線與軸交于,所以,因此有,化簡整理得:或.若,由可知;,這與已知矛盾,故舍去;若,所以有,因此.故答案為:或【點睛】本題考查了拋物線的定義的應用,考查了等差數列的性質,考查了數學運算能力.15.20【解析】
設等差數列的公差為,由數列為等差數列,且,根據等差中項的性質可得,,解方程求出公差,代入等差數列的通項公式即可求解.【詳解】設等差數列的公差為,由數列為等差數列知,,因為,所以,解得,所以數列的通項公式為,所以.故答案為:【點睛】本題考查等差數列的概念及其通項公式和等差中項;考查運算求解能力;等差中項的運用是求解本題的關鍵;屬于基礎題.16.【解析】
變換得到,計算焦點得到答案.【詳解】拋物線的標準方程為,,所以焦點坐標為.故答案為:【點睛】本題考查了拋物線的焦點坐標,屬于簡單題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)6(Ⅱ)【解析】
(Ⅰ)化簡得到直線的普通方程化為,,是以點為圓心,為半徑的圓,利用垂徑定理計算得到答案.(Ⅱ)設,則,得到范圍.【詳解】(Ⅰ)由題意可知,直線的普通方程化為,曲線的極坐標方程變形為,所以的普通方程分別為,是以點為圓心,為半徑的圓,設點到直線的距離為,則,所以.(Ⅱ)的標準方程為,所以參數方程為(為參數),設,,因為,所以,所以.【點睛】本題考查了參數方程,極坐標方程,意在考查學生的計算能力和應用能力.18.(1);(2)見解析.【解析】
(1)將問題轉化為對任意恒成立,換元構造新函數即可得解;(2)結合(1)可得,令,求導后證明其導函數單調遞增,結合,即可得函數的單調區(qū)間和最小值,即可得證.【詳解】(1)對任意恒成立等價于對任意恒成立,令,,則,當時,,單調遞增;當時,,單調遞減;有最大值,.(2)證明:由(1)知,當時,即,,,令,則,令,則,在上是增函數,又,當時,;當時,,在上是減函數,在上是增函數,,即,.【點睛】本題考查了利用導數解決恒成立問題,考查了利用導數證明不等式,考查了計算能力和轉化化歸思想,屬于中檔題.19.(1)();(2)證明見解析.【解析】
(1)設點,分別用表示、表示和余弦定理表示,將表示為、的方程,再化簡即可;(2)設直線方程代入的軌跡方程,得,設點,,,表示出直線,取,得,即可證明直線過軸上的定點.【詳解】(1)設,由已知,∴,∴(),化簡得點的軌跡的方程為:();(2)由(1)知,過點的直線的斜率為0時與無交點,不合題意故可設直線的方程為:(),代入的方程得:.設,,則,,.∴直線:.令,得.直線過軸上的定點.【點睛】本題主要考查軌跡方程的求法、余弦定理的應用和利用直線和圓錐曲線的位置關系求定點問題,考查學生的計算能力,屬于中檔題.20.(1)證明見解析;(2)證明見解析;(3).【解析】
(1)由平面與平面沒有交點,可得與不相交,又與共面,所以,同理可證,得證;(2)由四邊形是平行四邊形,且,則不可能是矩形,所以與不垂直;(3)先證,可得為的中點,從而得出是的中點,可得.【詳解】(1)依題意都在平面上,因此平面,平面,又平面,平面,平面與平面平行,即兩個平面沒有交點,則與不相交,又與共面,所以,同理可證,所以四邊形是平行四邊形;(2)因為,兩點不在棱的端點處,所以,又四邊形是平行四邊形,,則不可能是矩形,所以與不垂直;(3)如圖,延長交的延長線于點,若四邊形為菱形,則,易證,所以,即為的中點,因此,且,所以是的中位線,則是的中點,所以.【點睛】本題考查了立體幾何中的線線平行和垂直的判定問題,和線段長的求解問題,意在考查學生的空間想象能力和邏輯推理能力;解答本題關鍵在于能利用直線與直線、直線與平面、平面與平面關系的相互轉化,屬中檔題.21.(1),(2)【解析】
(1),所,兩式相減,即可得到數列遞推關系求解通項公式,由,整理得,得到,即可求解通項公式;(2)由(1)可知,,即可求得數列的前項和.【詳解】(1)因為,所,兩式相減,整理得,當時,,解得,所以數列是首項和公比均為的等比數列,即,因為,整理得,又因為,所以,所以,即,因為,所以數列是以首項和公差均為1的等差數列,所以;(2)由(1)可知,,,即.【點睛】此題考查求數列的通項公式,以及數列求和,關鍵在于對題中所給關系合理變形,發(fā)現(xiàn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 責任和經濟協(xié)議書
- 物業(yè)居間費協(xié)議書
- 西城區(qū)城市供暖協(xié)議書
- 購買荒山墳墓地協(xié)議書
- 舊房屋確權協(xié)議書
- 少先隊活動協(xié)議書
- 聘請醫(yī)生做法人協(xié)議書
- 樓盤區(qū)購房協(xié)議書
- 無理由退貨協(xié)議書
- 版終止租房協(xié)議書
- 貨物實時監(jiān)控系統(tǒng)行業(yè)跨境出海項目商業(yè)計劃書
- 2024年吐魯番市高昌區(qū)招聘社區(qū)工作者筆試真題
- 糖尿病中醫(yī)健康教育講座
- 地《巴西》第一課時教學設計-2024-2025學年七年級地理下冊(人教版2024)
- 27萬噸年丙烯腈項目初步設計說明書
- 裝配式建筑概論課件:BIM技術在裝配式建筑中的應用
- 2025年高考作文預測范文10篇
- 四川省九師聯(lián)盟2025屆高三仿真模擬卷物理試卷及答案(HG)
- 乙狀結腸癌試題及答案
- 禁毒工作面試題及答案
- 江蘇蘇州國家歷史文化名城保護區(qū)、蘇州市姑蘇區(qū)區(qū)屬國資集團招聘筆試題庫2025
評論
0/150
提交評論