【未來能源研究所】充電:美國公用事業(yè)規(guī)模的電力儲存狀況-2025.4_第1頁
【未來能源研究所】充電:美國公用事業(yè)規(guī)模的電力儲存狀況-2025.4_第2頁
【未來能源研究所】充電:美國公用事業(yè)規(guī)模的電力儲存狀況-2025.4_第3頁
【未來能源研究所】充電:美國公用事業(yè)規(guī)模的電力儲存狀況-2025.4_第4頁
【未來能源研究所】充電:美國公用事業(yè)規(guī)模的電力儲存狀況-2025.4_第5頁
已閱讀5頁,還剩63頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

ChargingUp:TheState

ofUtility-ScaleElectricityStorageintheUnitedStates

MollyRobertson,OmidMirzapour,andKarenPalmer

Report25-09April2025

AbouttheAuthors

MollyRobertsonisanassociatefellowatResourcesfortheFuture(RFF)working

ontopicsrelatedtotheelectricpowersector,includinggriddecarbonization,

electrification,andelectricitymarketdesign.ShehasalsocontributedtoRFF’sgrowing

workonequitablecommunitytransitionandenvironmentaljustice.Sheholdsa

master’sinpublicpolicyfromtheUniversityofMichigan’sFordSchool.

OmidMirzapourisaPhDcandidateatDepartmentofElectricalandComputer

EngineeringatUniversityofUtah.Hisresearchfocusesontheefficientdeploymentofflexibletransmissiontechnologies.In2024asaninternatRFF,hefocusedongridscale

energystorageusesanddeployment.

KarenPalmerisaseniorfellowatRFFandanexpertontheeconomicsof

environmental,climateandpublicutilityregulationoftheelectricpowersector.Her

workseekstoimprovethedesignofenvironmentalandtechnologyregulationsinthe

sectorandthedevelopmentofnewinstitutionstohelpguidetheongoingtransition

oftheelectricitysector.Totheseends,sheexploresclimatepolicydesign,analyzes

efficientwaystopromoteuseofrenewableandothercleansourcesofelectricity,andinvestigatesnewmarketdesigns,newapproachestoelectricitypricingandregulatory

reformstopavethewayforlong-termdecarbonizationofelectricitysupplyand

electrificationoftheenergyeconomy.

Acknowledgements

ThisreportwasmadepossiblebythosewhogenerouslysupportRFF.WewouldliketothankBenjaminHobbs,JamesBushnell,JesseBuchsbaum,andMcKennaPeplinskifor

theirhelpfulcomments.Anyerrorsareourown.

ResourcesfortheFuturei

ChargingUp:TheStateofUtility-ScaleElectricityStorageintheUnitedStatesii

AboutRFF

ResourcesfortheFuture(RFF)isanindependent,nonprofitresearchinstitutionin

Washington,DC.Itsmissionistoimproveenvironmental,energy,andnaturalresourcedecisionsthroughimpartialeconomicresearchandpolicyengagement.RFFis

committedtobeingthemostwidelytrustedsourceofresearchinsightsandpolicysolutionsleadingtoahealthyenvironmentandathrivingeconomy.

TheviewsexpressedherearethoseoftheindividualauthorsandmaydifferfromthoseofotherRFFexperts,itsofficers,oritsdirectors.

SharingOurWork

OurworkisavailableforsharingandadaptationunderanAttribution-

NonCommercial-NoDerivatives4.0International(CCBY-NC-ND4.0)license.Youcancopyandredistributeourmaterialinanymediumorformat;youmustgive

appropriatecredit,providealinktothelicense,andindicateifchangesweremade,andyoumaynotapplyadditionalrestrictions.Youmaydosoinanyreasonable

manner,butnotinanywaythatsuggeststhelicensorendorsesyouoryouruse.Youmaynotusethematerialforcommercialpurposes.Ifyouremix,transform,orbuilduponthematerial,youmaynotdistributethemodifiedmaterial.Formoreinformation,visit

/licenses/by-nc-nd/4.0/

.

ResourcesfortheFutureiii

Abstract

Grid-scalestoragecanplayanimportantroleinprovidingreliableelectricitysupply,

particularlyonasystemwithincreasingvariableresourceslikewindandsolar.

Economics,publicpolicies,andmarketrulesallplayaroleinshapingthelandscapeforstoragedevelopment.Inthisreport,weofferanoverviewofthesefactors,drawingontherelevantliteratureandongoingpolicydialogue.WeexplorethepotentialrolethesefactorshaveplayedinshapingthegrowthofstorageacrosstheUnitedStates.

ChargingUp:TheStateofUtility-ScaleElectricityStorageintheUnitedStatesiv

Contents

1.Introduction1

2.TheRoleforEnergyStorageinthePowerSectorTodayandTomorrow1

2.1.CurrentUsesofEnergyStorage1

2.1.1.Arbitrage1

2.1.2.AncillaryServices3

2.1.3.CapacityandResourceAdequacy4

2.1.4.StorageasTransmission-OnlyAssets4

2.1.5.StorageinVerticallyIntegratedUtilities5

2.2.RoleofStorageinaHigh-RenewablesFuture6

2.3.PotentialforLong-DurationEnergyStorage9

3.PoliciesSupportingStorage10

4.CompetitiveMarketRulesforStorage14

4.1.Interconnection14

4.2.CompensationforResourceAdequacy15

4.3.BiddingRules18

4.4.StateofChargeRequirements20

5.EvidenceonStorageDeploymentintheUS22

5.1.RegionalVariationinGrowth22

5.2.StorageandVariableGeneration23

5.3.StorageCapacitybyProductClass24

5.4.DriversofAdoption27

6.Conclusions27

References29

ChargingUp:TheStateofUtility-ScaleElectricityStorageintheUnitedStates1

1.Introduction

Astheelectricitysectorreliesmoreonvariableenergysourceslikewindandsolar,grid-connectedenergystoragewillbecomeincreasinglyimportanttosupport

reliableelectricitysupply.Storagecantransferelectricitygeneratedduringhourswhenrenewableenergyisplentifultomeetdemandatothertimesoftheday.Grid-scalestoragespecificallycanalsoprovidekeygridservices,suchasreservepower,frequencyresponse,andflexibleramping,tosupportgridstability.

Astheneedsofthegridevolve,storagecanprovideeffectivesolutions,butitdoes

notalwaysfitneatlyintothemarketdesignsandoperatingpracticesintheelectricitysector.Itremainsunclearwhattypesofmarketdesignsandincentivesareneeded

toelicitoptimalstoragedeploymentwithoutoverprocuringstoragerelativetomoreefficientoptions.Thisreportreviewsdriversofgrid-scalestoragedeploymentintheUnitedStates,identifyingprogressandbarrierstoarobuststoragelandscape,withafocusontheeconomicsofandmarketsforstand-alonestoragetechnologies.WeprovideareviewinSection2ofwhattheliteraturehastosayaboutthepotential

economicvalueofstoragenowandunderdifferentfuturescenarios.InSection3,

wedescribepoliciesinplaceandunderdiscussionthatcouldhaveanimpacton

grid-scalestoragedeployment.Section4highlightsmarketstructuresandrulesthataffectstorageoperationsandincentives,andSection5discusseshowthesefactorscontributetothecurrenttrendsingrid-scalestoragedeploymentacrosstheUnitedStates.Section6concludes.

2.TheRoleforEnergyStorageinthePowerSectorTodayandTomorrow

Grid-scaleenergystoragehasbeengrowinginthepowersectorforoveradecade,

spurredbyvariablewholesaleenergyprices,technologydevelopments,andstate

andfederalpolicies.Inthissection,weidentifyseveraldifferentpotentialrolesfor

energystorageinthemoderngrid.Thenwediscusshowahigh-renewablesfuturemayexpandthevalueofenergystoragesolutions.

2.1.CurrentUsesofEnergyStorage

2.1.1.Arbitrage

Oneofthemainrolesforstorageinthepowersystemisenergypricearbitrage.Simplyput,batteriescanactasdemandwhenenergypricesarelowandassupplywhen

pricesarehigh,takingadvantageofpricefluctuations.Asanincreasingnumberoflow-marginal-costrenewablesparticipateinthemarket,arbitragecaneffectivelyextend

theavailabilityofthatlow-costenergyacrossmorehoursintheday.

ResourcesfortheFuture2

Differentmodelingeffortshaveattemptedtocapturethepotentialimpactofadding

energystoragetowholesaleenergymarketstoengageinarbitrage.Qinetal.(2023)

studytheimpactofshort-durationbatterystoragecapacityandmarketparticipationstrategyoncarbonemissions,generationcost,andconsumercosts.Theyfindthat

storageimpactonelectricitymarketsdependsonseveralfactors:renewableenergy

deployment,storagecapacity,andparticipationinreal-timeversusday-aheadmarkets.

Qinetal.considerdifferentmarketopportunitiesforstoragearbitrageinamodeloftheNewEnglandgrid.Themodelingestimatesthatstorageparticipationwilllowerelectricitypricesandemissions,particularlywithahighpenetrationofrenewables.

Electricitypricesdropthemostwhenstorageparticipatesinthereal-timemarket,whileemissionsdecreasethemostwhenstorageparticipatesintheday-ahead

market.However,Qinetal.alsofindthatastotalstoragecapacityincreasesfrom

1to5gigawatts(GW),themarginalpriceandemissionsimpactsdiminish.Figure1

showsthediminishingprofitsacrossdifferentmarketparticipationstrategies(real-time,day-ahead,anddualparticipation)asstoragecapacityincreases.Storage

profitsdiminishsignificantlyasstoragecapacityincreasesbecauseeachadditionalunitofstoragecapacityreducesthearbitrageopportunityforotherstorageowner/operators.Anygivenamountofstoragecapacityismoreprofitablewithahigherlevelofrenewablesinthesystem(seepanelC).Intheiranalysis,Qinetal.findthegreatestprofitopportunitiesinthereal-timemarket,inpartbecausetheyassumestorage

operatorsbidphysicalcostsandparametersintheday-aheadmarket,andbidto

maximizearbitrageprofitsinreal-time(usingday-aheadpriceforecasts).Underdualparticipation,storageoperatorsmayloseoutonreal-timepricevolatilitybecause

ofhowtheywerescheduleddayahead,particularlyiftheycan’tforeseereal-timearbitrageopportunities.

Figure1.StorageProfitUnderDifferentLevelsofWindPenetration

Source:Qinetal.(2023).

Note:Storageprofitunder(A)low(6.5GW),(B)medium(13GW),and(C)high(26GW)windpenetration.RT=participationinthereal-timemarketonly;DA=participationintheday-aheadmarketonly;DA+RT=dualparticipation.Theper-unitprofitsareperMWhofstoragecapacityperday.

ChargingUp:TheStateofUtility-ScaleElectricityStorageintheUnitedStates3

Overall,theopportunityforstoragetooperateasarbitragedependsonpricevolatility,whichmayincreasewiththepenetrationofrenewablesorhigh-costpeakingresources.Thereisalimitontheamountofstoragecapacitythatcanbeprofitable,particularlyifotherarbitrageprovidersareconsidered.Forexample,greaterdemandresponseandincreasedtransmissionbetweenregionscouldhelpstabilizepricesandlimitprofitsforadditionalenergystoragecapacity.Manypowersectorexpertsagreethattransmissioniscurrentlyunderbuilt(DOEGDO2023)andthatmanagedloadprograms,demand-

responseprograms,orvariable-pricingpoliciesthattakeadvantageoftheflexibility

ofthedemandsideoftheelectricitymarketareunderused.Ifpolicyeffortsto

expandtransmissionandactivedemand-sideparticipationinelectricitymarketsaresuccessful,profitablestorageopportunitiesmaybefewer.Forexample,intheNationalTransmissionPlanningStudy(DOEGDO2024),storagepenetrationvariednoticeablyacrossdifferenttransmissionexpansionscenarios.Thescenarioswiththegreatest

transmissionexpansionhadlessstorage(asapercentageoftotalcapacity)thanthescenarioswithmoderatetransmissionexpansion,reflectingthefactthatstorageandtransmissionmaybesubstitutesinsomecases(Biancardietal.2024;Bustosetal.

2018;Neetzowetal.2018).

2.1.2.AncillaryServices

Ancillaryservicesareaclassofproductsintendedtomaintainstableoperationofthegridratherthanserveelectricitydemanddirectly.Forexample,generatorsmaybe

paidtohelpmaintainaconsistentfrequencyonthegridthroughsmalladjustments

inoperationandtomakesurethesystemhassufficientresourcestoabsorbsudden

lossesoflargecomponents,suchasmajortransmissionlinesorlargegenerators.

Historically,theseserviceshavebeenprovidedbyfossilfuelgeneratorsbecauseof

theirabilitytoadjustoutputrelativelyquicklyondemand,butbatterieshavebecomeanincreasinglycompetitiveplayerinthesemarketsbecauseoftheirinstantaneous

rampingcapability.Someancillaryservices,suchasthefrequencyregulationjust

described,aredeployedonamuchshortertimeframe,secondtosecond,andtypicallyforsmall-megawatt(MW)quantities.Asaresult,storagedevicesdonotneedlong

durationstotakeadvantageofcertainancillaryservicemarkets.Asdiscussedin

Section5,ancillaryservicesmakeupamajorpartofthecurrentstoragerevenuestack.

Marketexpertshaveestimatedthatinsomemarkets,suchastheElectricReliabilityCouncilofTexas(ERCOT)andtheCaliforniaIndependentSystemOperator(CAISO),storageisnearlysaturatingtheancillaryservicemarkets,meaningsufficientcapacityisavailablethatprices,andcorrespondingrevenuesaredeclining(Vermillion2023b;AscendAnalytics2023).Forinstance,whenbatterystorageenteredtheCalifornia

market,itsmainrevenuesourcewasup-anddown-regulationservices.Sincethatmarketwassmall,onlyseveralhundredMWofeachofthoseproducts,themarketquicklybecamesaturatedasbatteriesexceeded10GWin2024(CAISO2024).Thepaceanddegreeofsaturationintherelevantancillaryservicemarketsdependongrowthofstoragecapacityandopportunitiesforarbitrageintheenergymarkets,whichmaydecreasetheamountofstoragecapacitysetasideforancillaryservices.

ResourcesfortheFuture4

Operatorsofstoragedevicesdonotnecessarilyexclusivelychargeatthelowest

energypriceswhentheysellinancillaryservicemarkets,andtheremaybesome

unanticipatedconsequences.Forexample,batteriesmayneedtobechargedduringarelativelyhigh-priceperiodintheenergymarkettomaintainstateofcharge

requirements(eeSection4.4)(MansfieldandKonet2023).Researchindicatesthat

untilthereissufficientrenewableenergyinthegenerationmix,batteryoperationin

ancillaryservicemarketsmayalsoleadtoanincreaseinemissionsduetospillover

effectsintheenergymarketsasfossilgeneratorsaltertheiroperationstomeet

battery-chargingneedsforenergy(Buchsbaumetal.2024;Ryanetal.2018;MansfieldandKonet2023).

2.1.3.CapacityandResourceAdequacy

Energystoragecanalsosupportresourceadequacybycountingtowardasystem’s

totalinstalledcapacity.Throughcapacitymarketsorotherresourceadequacy

constructs,storageprovidersarecompensatedfortheirpotentialtoprovideenergy

inthefuture,particularlywhentheexpectationisthatdemandwillbehighorsupplylow.Thetreatmentofstorageincapacitymarketsvariesbyregion(seeSection4.2),butgenerally,longer-durationstorageproviderscanreceivemorecompensationthantheirshort-durationcounterpartsbecausethestoragetheyprovideismorelikelyto

beavailablewhenneeded.Asvariablegenerationincreasesandenergypricesfall,

generatorsmayincreasinglyturntocapacitypaymentstocovertheirgoing-forwardcosts(LoPreteetal.2024).Generatorretirementscanalsoincreasecapacitypaymentopportunitiesfornewgenerators.Thesummer2024capacityauctioninthePJM

regionaltransmissionorganization(RTO)sawrecordhighpricesafteraseriesofgeneratorretirementsleftitwithdiminishedsupplyofcapacity(PJM2024).

Capacitypaymentscanalsoencouragetheexpansionofhybridresourceswhere

storageisco-locatedwithgenerationlikewindorsolarplants.Variableresourceshaverelativelylow-capacityvalueontheirown,becausetheyareintermittentandcan’t

alwaysprovideenergyondemand.Byaddingon-sitestorage,variablegeneratorscanextendtheiravailabilityandsecuregreatercapacitypayments(Stencliketal.2022).

Havingstorageonthesystemalsointroducesanewtypeofelectricitydemandthat

couldaffectsystem-widecapacityneeds.Unlikegenerators,storagealsoactsas

demandforelectricity,andthatsideofthestorageoperationneedstobeconsideredintheloadforecaststoensureresourceadequacy.Whilestorageengaginginarbitrageisunlikelytoconsumeelectricitywhenpricesarehigh,batteriesobligatedtoprovideancillaryservicescouldstillstrainthesystemattimesofhighenergydemand.

2.1.4.StorageasTransmission-OnlyAssets

Storagecanalsocontributetotransmissioncongestionreliefbyshiftingpeakdemandtooff-peaktimeperiodsatconstrainedlocationsonthegrid.Inmanymarkets,energystoragecanactinthiswayasatransmissionasset,remuneratedwitharegulatedrateinsteadofthroughsalesofamarketproduct.Aftera2016technicalconference,the

FederalEnergyRegulatoryCommission(FERC)releasedapolicystatementproviding

ChargingUp:TheStateofUtility-ScaleElectricityStorageintheUnitedStates5

guidelinesforthecost-basedregulatedpricingofstorageastransmission-onlyassets(SATOAs).FollowingthereleaseofFERC’spolicystatement,severalindependent

systemoperators(ISOs)andRTOssubmittedtheirSATOAintegrationproposalsto

FERC.SATOAiscurrentlyimplementedbytheMidcontinentIndependentSystem

Operator(MISO),theIndependentSystemOperatorofNewEngland(ISO-NE),andtheSouthwestPowerPool(SPP).TheNewYorkIndependentSystemOperator(NYISO)

andthePennsylvania-NewJersey-MarylandInterconnection(PJM)proposalsarestillunderdevelopment,andCAISOandERCOTdonotcurrentlysupportstorageasa

transmission-onlyassetdespiteongoingdiscussionshighlightingthevalueofsuchaservice.

InapresentationonconsideringstorageastransmissioninNYISO(Zoellmer2023),severalchallengesandconsiderationswereidentified:

?integratingenergystorageintransmission-planningprocesses,includinglocaltransmissionplanning,reliabilitystudies,economicstudies,andpublicpolicystudies

?evaluatingSATOAagainstothertransmissionsolutions,includinglinebuildoutanddeploymentofgrid-enhancingtechnologies,intermsofefficiency,cost-effectiveness,andidentificationofuniqueattributesofSATOA

?incorporatingSATOAintheinterconnectionprocess

?establishingcapacityanddurationrequirements,includingassetmodelingof

installedreservemarginandlocationalminimuminstalledcapacityrequirements

?definingownershiprequirementsandoperationandmaintenanceresponsibilities

?consideringpotentialuseincontingencymanagement

FERChaspubliclystatedthatstoragecouldbeusedasadual-useasset,actingas

bothatransmissionandagenerationresource,inaccordancewithestablishedrules(FERC2017).However,noderegulatedmarketcurrentlypermitsdualuse,although

Californiahasconsideredpossiblemechanismsfordoingso.Themainconcernsare

cross-subsidizationandadverseimpactsinthecompetitivemarketsandmanagementofthestateofchargeacrossthedifferentproductcategories.

2.1.5.StorageinVerticallyIntegratedUtilities

Verticallyintegratedutilitiesowngeneration,transmission,anddistributionsystemsintheirgeographicserviceterritories.Theseutilitiesreceiveafixedrateofreturn

oncapitalinvestments,asregulatedbytherelevantpublicutilitycommission,and

regulatorsapproveinvestmentsandcoststhatincludethisrateofreturnonthose

investmentsinsettingelectricityratesdesignedtorecoverthosecosts.Thisrate-

makingstructureofferssomepotentialbenefitstobatteriesandotherformsofgrid-scalestorage.Becauseasingleutilityownsthegridandgenerationinfrastructure,

storageassetsownedbyverticallyintegratedutilitiescanbeusedtosupportenergy,transmission,andgridservicesallatthesametime.Onechallengeforenergystorageproliferationinverticallyintegratedutilitiesisthelackofanhourlypricesignalina

competitivewholesaleenergymarket.Energyarbitrageopportunitiesbecomeclear

ResourcesfortheFuture6

whentherearelargeswingsinday-aheadandreal-timepricesthatstoragedevices

cancapitalizeon.Withoutthoselargeswings,verticallyintegratedutilitiesthatoperateoutsideoforganizedwholesalemarketsmaybeslowertoseethevalueoropportunityinbuildingnewstoragedevices.

Thereislimitedevidenceofgrowingstorageinvestmentbyverticallyintegrated

utilitiescomparedwithindependentpowerproviders.TheEIAreportsgenerationbyownershipclass,butwithlimiteddetail.Theinvestor-ownedutility(IOU)category

includesverticallyintegratedutilitiesbutmayalsoincludeutilitiesthatonlyown

transmissionanddistributionassets.In2023,investor-ownedutilitiesowned

approximately36percentofelectricitycapacitybutonly13percentofstorage

capacity.TheshareofIOUownedstoragecapacityisslightlylessthaninvestor-ownedutilityownershipofwind(19percent)andsolar(18percent)resources(EIA2023b).

Thiscomparisondoesnotperfectlyrepresenttheprevalenceofstorageinverticallyintegratedutilities,butwedonotobserveanypreferentialinvestmentinstorage

comparedwithotherzero-emissionsgenerationinthesedata.

2.2.RoleofStorageinaHigh-RenewablesFuture

Muchoftheassumedvalueofenergystorageacrosstheproductsandservices

discussedinSection2.1comesfromvariableprices,particularlyovertime.Asgrid

decarbonizationeffortscontinueandlow-costrenewablesproliferate,pricevariabilityisexpectedtogrow(Armstrongetal.2022).Therefore,weexpectthevalueofstoragetoincreasewiththeexpansionofvariableresourceslikewindandsolar.Figure2,fromMallapragadaetal.(2023),showstheimpactofimposing5gramsperkilowatthour(g/kWh;98.9percentcarbonreductionfrombaseline)and1g/kWh(99.8percentcarbonreductionfrombaseline)emissionsstandardsonthegenerationcapacitymixin2050.Astheresultsshow,morestringentcarbonconstraintscausealargeportionofnaturalgascapacitytobereplacedwithincreasedvariablegeneration(yellowandgreen),

energystorage(brown),andasmallshareofgaswithcarboncapture(orange).

ChargingUp:TheStateofUtility-ScaleElectricityStorageintheUnitedStates7

Figure2.AnnualGenerationUnderVariousLevelsofCarbonConstraints

Source:Mallapragadaetal.(2023).

Note:CCGT=combinedcyclegasturbine;OCGT=open-cyclegasturbine;PHS=pumpedhydrostorage;DistrPV=distributedphotovoltaic;NSE=non-servedenergy;CCGT_CCS=combinedcyclegasturbinewithcarboncaptureandsequestration.

Figure3showspotentialdistributionsofenergypricesinERCOT(whichareequivalent

tothemarginalvalueofenergy)historicallyandacrossdifferentemissionsand

flexibletechnologyscenarios.Theemissionslimitcasesrangefrom50gCO2/kWhto1gCO2/kWhin2050.Technologieswithineachemissionsscenarioincludedifferentcombinationsofexistingstoragetechnologies(includinglithiumionandpumped

hydrostorageinthebasecase),reduxflowbatteries,thermalstorage,andhydrogenelectrolysisatdifferentprices.Astheresultsshow,thesharesofhourswithverylow($0–$5/MWh)andveryhigh(>$200/MWh)pricesinthesystemincreaseascarbon

constraintstighten,withsomevariationdependingonavailabletechnologies.This

findingisthedirectresultofrenewablegenerationdominanceunderstringentcarbon

constraints.

ResourcesfortheFuture8

Figure3.PriceVariabilityinERCOTUnderDifferentEmissionsPoliciesandStorageEnvironments

Source:Mallapragadaetal.(2023).

Note:BC=basecase;RFB=reduxflowbatteries

Verylowpricesgenerallyindicaterenewablegenerationcurtailmentduringexcess-generationperiods,andveryhighpricesreflectrelianceonscarcitypricestoattractsuppliers.Themoderatepricesinbetween(teal-coloredbands)usuallyrepresent

marginalcosts,andtheshareofhourswherethosepricesprevailgrowst

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論