北京某中學2025年中考數(shù)學零模試卷(含答案)_第1頁
北京某中學2025年中考數(shù)學零模試卷(含答案)_第2頁
北京某中學2025年中考數(shù)學零模試卷(含答案)_第3頁
北京某中學2025年中考數(shù)學零模試卷(含答案)_第4頁
北京某中學2025年中考數(shù)學零模試卷(含答案)_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025年北京理工大學附中中考數(shù)學零模試卷

一、選擇題:本題共8小題,每小題2分,共16分。在每小題給出的選項中,只有一項是符合題目要求的。

1.下列圖形,既是中心對稱圖形又是軸對稱圖形的是()

2.如圖,直線48,CD相交于點。,OELAB,若乙4。。=34。,則乙。OE的度數(shù)是()

A.34°

B.56°

C.66°

D.146°

3.實數(shù)Q,b在數(shù)軸上對應點的位置如圖所示,下列結(jié)論正確的是()

1gI1?1_________L

-2-1012

A.a>—1B.6>1C.—a<bD.—b>a

4.已知關于久的方程第2一4%+九=0有兩個不相等的實數(shù)根,貝1伍的取值范圍是()

A.n<4B.n<4C.n>4D.n=4

5.一個不透明的口袋中有2個紅球和1個白球,這三個球除顏色外完全相同.搖勻后,隨機從中摸出一個小

球不放回,再隨機摸出一個小球,則兩次摸出小球的顏色相同的概率是()

3ill

AjB-3C-4D-2

6.黨的二十大報告中指出,我國全社會研發(fā)經(jīng)費支出達二萬八千億元,居世界第二位.“二萬八千億”用科

學記數(shù)法表示為()

A.0.28x1013B.2.8x1011C.2.8x1012D.28xIO11

7.已知NP4Q=36。,點B為射線AQ上一固定點,按以下步驟作圖:

第1頁,共17頁

①分別以4,B為圓心,大于,4B的長為半徑畫弧,相交于兩點M,N;

②f乍直線MN交射線4P于點D,連接BD;

③以B為圓心,B力長為半徑畫弧,交射線2P于點C.

根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯誤的是()

A./.CDB=72°B,△ADBs^ABC

C.CD-.AD=2:1D.Z.ABC=3/.ACB

8.如圖,在菱形4BCD中,AABC=60°,點P和點Q分別在邊CD和上運動

(不與4C、。重合),滿足DP=AQ,連結(jié)4P、CQ交于點E,在運動過程中,

則下列四個結(jié)論正確的是()

2

(DAP=CQ;②NAEC的度數(shù)不變;③4APD+乙CQD=iso0;@CP^AP-EP

A.①②B.③④C.①②④D.①②③④

二、填空題:本題共8小題,每小題2分,共16分。

9.分解因式:x3-x=

10.方程$+工=0的解為

2x4-3x

11.某中學開展“讀書伴我成長”活動,為了解八年級200名學生四月份的讀書冊數(shù),對從中隨機抽取的20

名學生的讀書冊數(shù)進行調(diào)查,結(jié)果如表:

冊數(shù)/冊12345

人數(shù)/人25742

根據(jù)統(tǒng)計表中的數(shù)據(jù)估計八年級四月份讀書冊數(shù)不少于3本的人數(shù)約有人.

12.在平面直角坐標系xOy中,反比例函數(shù)y=§的圖象經(jīng)過點P(2,m),且在每一個象限內(nèi),y隨久的增大而減

小,則點P在第象限.

第2頁,共17頁

15.如圖,△力BC中,NA=90。,AB=AC,以點B為圓心,適當長為半徑畫弧,分A

別交B4BC于點M,N,再分別以點M,N為圓心,大于的長為半徑畫弧,兩

弧交于點F,作射線BF交AC于點D.若點。到BC的距離為1,則AC=B)N------C

16.某市為進一步加快文明城市的建設,園林局嘗試種植4、B兩種樹種.經(jīng)過試種后發(fā)現(xiàn),種植力種樹苗a棵,

種下后成活了(:a+5)棵,種植B種樹苗b棵,種下后成活了(6-2)棵.第一階段兩種樹苗共種植了40棵,

且兩種樹苗的成活棵樹相同,則種植4種樹苗棵.第二階段,該園林局又種植4種樹苗根棵,B種樹苗n

棵,若m=2n,在第一階段的基礎上進行統(tǒng)計,則這兩個階段種植Z種樹苗成活棵數(shù)種植B種樹苗成

活棵數(shù)(填“>”或“=").

三、解答題:本題共12小題,共68分。解答應寫出文字說明,證明過程或演算步驟。

17.(本小題5分)

計算:(-1廠3+|V7-1|-(1)-2+2cos45。-78.

18.(本小題5分)

先化簡,再求值:J—Z—(a+2-----),其中a?+3a—1=0.

19.(本小題5分)

r4(x—2)<x—5

解不等式組:3計1

匕->久

20.(本小題6分)

如圖,在四邊形力BCD中,NDCB=90。,AD//BC,點E在BC上,AB//DE,AE平分N8AD.

(1)求證:四邊形ABED為菱形;

(2)連接BD,交力E于點。,若2E=6,sin^DBE=求CD的長.

21.(本小題6分)

某校在商場購進2、8兩種品牌的籃球,購買力品牌籃球花費了2500元,購買B品牌籃球花費了2000元,

且購買4品牌籃球的數(shù)量是購買B品牌籃球數(shù)量的2倍,已知購買一個B品牌籃球比購買一個月品牌籃球多花

第3頁,共17頁

30元.

(1)問購買一個月品牌、一個B品牌的籃球各需多少元?

(2)該校決定再次購進力、B兩種品牌籃球共50個,恰逢商場對兩種品牌籃球的售價進行調(diào)整,4品牌籃球

售價比第一次購買時提高了8%,8品牌籃球按第一次購買時售價的9折出售,如果該校此次購買A、B兩種

品牌籃球的總費用不超過3060元,那么該校此次最多可購買多少個B品牌籃球?

22.(本小題5分)

4月24日是中國航天日,某校初中部舉辦了“航天知識”競賽,每個年級各隨機抽取10名學生.統(tǒng)計這部

分學生的競賽成績,并對成績進行了收集、整理,分析.下面給出了部分信息.

a.初一、初二年級學生得分的折線圖

得分<分

b.初三年級學生得分:10,9,6,10,8,7,10,7,3,10.

c.初一初二、初三,三個年級學生得分的平均數(shù)和中位數(shù)如下:

年級初一初二初三

平均數(shù)88m

中位數(shù)88.5n

根據(jù)以上信息,回答下列問題:

⑴由折線圖可知,初一、初二兩個年級學生“航天知識”競賽,成績更穩(wěn)定的是(填“初一”或“初

二”);

(2)統(tǒng)計表中m=,n=;

(3)由于數(shù)據(jù)統(tǒng)計出現(xiàn)失誤,初三年級所調(diào)查的10名學生中有一名學生被記錄為6分,實際得分為9分,

將數(shù)據(jù)修正后,初三年級所調(diào)查的10名學生中以下統(tǒng)計數(shù)據(jù)發(fā)生變化的:(寫出符合題意的序號).

①平均數(shù);②中位數(shù);③眾數(shù);④方差.

第4頁,共17頁

23.(本小題5分)

在平面直角坐標系%Oy中,函數(shù)y=ax+b(aW0)的圖象經(jīng)過點(一1,4),與函數(shù)y=2%的圖象交于點

(1)求m的值和函數(shù)y=ax+b(aW0)的解析式;

(2)當%>1時,對于%的每一個值,函數(shù)y=kx-k+2(fcW0)的值大于函數(shù)y=ax+b的值,且小于函數(shù)y=

2%的值,直接寫出k的取值范圍.

24.(本小題6分)

如圖,4B為。。的直徑,BD=CD,過點力作。。的切線,交。。的延長線于點E.

(1)求證:AC//DE-,

(2)若2C=2,tanE=求。E的長.

25.(本小題5分)

小明發(fā)現(xiàn)某乒乓球發(fā)球器有“直發(fā)式”與“間發(fā)式”兩種模式,在“直發(fā)式”模式下,球從發(fā)球器出口到

第一次接觸臺面的運動軌跡近似為一條拋物線;在“間發(fā)式”模式下,球從發(fā)球器出口到第一次接觸臺面

的運動軌跡近似為一條直線,球第一次接觸臺面到第二次接觸臺面的運動軌跡近似為一條拋物線.如圖1和

圖2分別建立平面直角坐標系xOy.

圖I直發(fā)式圖2間發(fā)式

通過測量得到球距離臺面高度y(單位:dm)與球距離發(fā)球器出口的水平距離單位:dm)的相關數(shù)據(jù),如表

所示:

表1直發(fā)式

x(dm)02468101620

y(dm)3.843.964m3.843.642.561.44

表2間發(fā)式

第5頁,共17頁

%(dm)0246810121416

y^dm)3.362.521.68n02.003.203.603.20

根據(jù)以上信息,回答問題:

(1)表格中小=,n-;

(2)直接寫出“直發(fā)式”模式下,球第一次接觸臺面前的運動軌跡的解析式;

(3)若“直發(fā)式”模式下球第一次接觸臺面時距離出球點的水平距離為四,“間發(fā)式”模式下球第二次接觸

臺面時距離出球點的水平距離為d2,則由d2(填或

26.(本小題6分)

在平面直角坐標系久0y中,已知拋物線y=-x2+2mx—m2+m—2(m是常數(shù)).

(1)求該拋物線的頂點坐標(用含稅代數(shù)式表示);

(2)如果點4(a,乃),8Q+2,丫2)都在該拋物線上,當它的頂點在第四象限運動時,總有為>力,求a的取值

范圍.

27.(本小題7分)

在△ABC中,AC=BC,乙4cB=90°,點D是線段上一個動點(不與點A,B重合),^ACD=a(0<a<45°),

以。為中心,將線段OC順時針旋轉(zhuǎn)90。得到線段DE,連接EB.

(1)依題意補全圖形;

(2)求NEDB的大小(用含a的代數(shù)式表示);

(3)用等式表示線段BE,BC,AD之間的數(shù)量關系,并證明.

28.(本小題7分)

對于線段MN和點P給出如下定義:點P在線段MN的垂直平分線上,若以點P為圓心,PM為半徑的優(yōu)弧向前

上存在三個點4B,C,使得△ABC是等邊三角形,則稱點P是線段MN的“關聯(lián)點”.例如,圖1中的點P

是線段MN的一個“關聯(lián)點”.特別地,若這樣的等邊三角形有且只有一個,則稱點P是線段MN的“強關聯(lián)

點”.

第6頁,共17頁

在平面直角坐標系xOy中,點4的坐標為(2,0).

⑴如圖2,在點的(1,一3),C2(l,0),C3Q,苧),以(2,1)中,是線段。A的“關聯(lián)點”的是;

(2)點B在直線丫=苧刀上.存在點P,是線段。力的“關聯(lián)點”,也是線段。B的“強關聯(lián)點”.

⑦直接寫出點B的坐標;

卷勵點。在第四象限且AD=2,記=a.若存在點Q,使得點Q是線段AD的“關聯(lián)點”,也是。8的“關

聯(lián)點”,直接寫出a及線段4Q的取值范圍.

第7頁,共17頁

參考答案

l.D

2.B

3.D

4.A

5.B

6.C

7.C

8.D

9.x(x+1)(久-1)

10.x—1

11.130

12-

13.22°

1猾

15.1+72

16.22>

17.解:原式=-1+—1—4+y/~2,—2,^

=—6.

18.解:由于小+3a—1=0

???a2+3a=1

、

原e式I=礪a—百3十a(chǎn)不2—97

CL—3CL—2

---------------------\/_________________

3a(a—2)Q+3)(a—3)

_1

—3a(a+3)

_1

3(a2+3a)

_i

一3

第8頁,共17頁

40—2)<%-5?

19.解:

、Z

解不等式⑦得:%<1,

解不等式領:x>-l,

??.不等式組的解集是—1〈尤W1.

20.(1)證明:???AD//BC,AB//DE,

:.AD//BE,ADAE=4AEB,

???四邊形4BED為平行四邊形,

???4E平分N8/W,

/.DAE=Z-BAE,

Z.BAE=Z.AEB,

???BA—BE,

;平行四邊形ABED為菱形;

(2)解:?.?四邊形力BED為菱形,AE=6,

AO=0E=3,BO=DO,AE1BD,

^.RtABOE^,sin^DBE==f,

BE5

3

,BE=—=5,

5

BO=VBE2-OE2=A/52—32=4,

BD=8,

"S菱形ABED=yE-BD=BE-CD,

6x8_24

2x5—T'

21.解:(1)設購買一個4品牌的籃球需久元,則購買一個B品牌的籃球需(x+30)元,

由題意得:衣”=2X喘

xx+30

解得:%=50,

經(jīng)檢驗,x=50是原方程的解,且符合題意,

則%+30=80.

答:購買一個月品牌的籃球需50元,購買一個B品牌的籃球需80元.

(2)設該校此次可購買a個B品牌籃球,則購進4品牌籃球(50-a)個,

第9頁,共17頁

由題意得:50x(1+8%)(50-a)+80x0.9a<3060,

解得:a<20,

答:該校此次最多可購買20個B品牌籃球.

22.解:(1)由折線圖可知,初一學生得分的波動比初二的小,所以成績更穩(wěn)定的是初一.

故答案為:初一;

(2)由題意得,m=^x(10x4+9+6+8+7x2+3)=8,

把初三年級學生得分從小到大排列,排在中間的兩個數(shù)分別是8、9,故中位數(shù)幾=竽=8.5,

故答案為:8,8.5;

(3)將其中的數(shù)據(jù)6改為9,則平均數(shù)、中位數(shù)和方差改變,眾數(shù)不變.

故答案為:①②④.

23.解:(1)把(l,zn)代入數(shù)y=2第得:m=2,

把(一1,4),(1,2)代入y=ax+b得:

(—a+b=4

ta+b=2'

解得

S=3

???y=—%+3;

(2)在丫=kr-々+2中,令第=1時,y=2,

?,?函數(shù)y=fcx-fc+2圖象過(1,2),

如圖:

//O

由圖可得,k的取值范圍是—l<k<2且kKO.

24.(1)證明:?.?第=比,

???Z-BAD=Z.CAD,

DO=DA,

第10頁,共17頁

???Z-ODA=Z.OAD,

Z.ODA=Z.CAD,

??.DE//AC;

(2)解:如圖,連接。C,過點。作。尸1AC于點F,

??.AOFA=90°,

由(1)知,DE//AC,

??.Z,OFA+(FOE=180°,

???乙FOE=AFOA+^AOE=90°,

??,ZB為。。的直徑,ZE為。。的切線,切點為4

???AB1AE,

???乙OAE=90°,

???/,AOE+ZE+/-OAE=180°,

???ZXOE+ZE=90°,

Z.FOA=乙E,

在△FOZZkZE。中,

AFOA=乙E,Z-OFA=A.EAO=90°,

??.△FZOSA/OE,

.OF_AF

AEOA

AF_OA

?t?—,

OFAE

,廠

,**tCLTlE—~1j

—OA——1,

AE2

AF1

.?.釜AE=2OA,

OF2

???OA=OC,OF1AC,

第11頁,共17頁

1

???AF=CF=^AC=1,

OF=2,

在Rt△。力F中,OA2=AF2+OF2,

.-.。弟=仔+22=i+4=5,

OA=

???AE=2A0=2<5,

OE=VOA2+AE2=J(<5)2+(2<5)2=725=5.

25.解:(1)由拋物線的對稱性及已知表1中的數(shù)據(jù)可知:m=3.96;

在“間發(fā)式“模式下,球從發(fā)球器出口到第一次接觸臺面的運動軌跡近似為一條直線,

設這條直線的解析式為曠=/?+/人力0),把(0,3.36)、(8,0)代入,得

解得:”不黑之,

lb=3.36

這條直線的解析式為y=-0.42%+3.36,

當x=6時,y=-0.42X6+3.36=0.84,

表格2中,n=3.84;

故答案為:3.96,3.84;

(2)y=—0.01(%—4)2+4;理由如下:

由已知表1中的數(shù)據(jù)及拋物線的對稱性可知:“直發(fā)式"模式下,拋物線的頂點為(4,4),

???設此拋物線的解析式為y=a(x-4)2+4(a<0),

把(0,3.84)代入,得3.84=a(0—4)2+4,

解得:a=-0.01,

???"直發(fā)式”模式下,球第一次接觸臺面前的運動軌跡的解析式為y=-0.01(x-4)2+4;

(3)當y=0時,0=—0.01(%-4)2+4,

解得:比1=一16(舍去),£2=24,

“直發(fā)式”模式下球第一次接觸臺面時距離出球點的水平距離為詢=24;”間發(fā)式”模式下,球第一次

接觸臺面到第二次接觸臺面的運動軌跡近似為一條拋物線,由已知表2中的數(shù)據(jù)及拋物線的對稱性可知:

“間發(fā)式”模式下,這條拋物線的頂點坐標為(16,3.20),

設這條拋物線的解析式為y=m(x-16)2+3,2(m<0),

把(8,0)代入,得0=機(8-16)2+3.2,

第12頁,共17頁

解得:m0.05,

??.這條拋物線的解析式為y=-0.05(%-16)2+3.2,

當y=0時,0=—0.05(x—16)2+3.2,

解得:xr=8,K2=24,

???d2=24dm,

?*?d]—d,2,

故答案為:=.

26.解:(1)y=—x2+2mx—m2+m—2=—(%—m)2+m—2,

???拋物線頂點坐標為Qn,血-2).

(2),?,拋物線頂點(m,TH—2)在第四象限,

fm>0

Vn-2<0'

解得。Vm<2,

???拋物線開口向下,

???x>血時,y隨工增大而減小,

???點4B在對稱軸右側(cè)時,滿足題意,即。之機,

當點”在對稱軸左側(cè)時,設點4(a,yD關于對稱軸對稱點4,坐標為(2zn-a,yi),

???點3在A/右側(cè)時,滿足題意,即2zn-aVa+2,

解得Q>m-1,

a>m—1,

0<m<2,

a>1.

27.解:(1)補全圖形如下:

???乙4=(ABC=45°,

???乙CDB=4/+匕ACD=45。+a,

第13頁,共17頁

???乙CDE=90°,

???LEDB=乙CDE-乙CDB=45°-a;

(3)BC=/L4D+BE,證明如下:

如圖1,過點。作DM148,交AC于點F,交BC的延長線于點M,

貝lj4M08=乙CDE=90°,

???乙MDB-乙BDC=(CDE-乙BDC,

即4COM=乙EDB,

???乙MBD=45°,

???ZM=乙MBD=45°,

???DM=DB,

由旋轉(zhuǎn)的性質(zhì)得:DC=DE,

-.ADCM^ADEB(SAS)f

???CM=BE,

???4M=45°,Z.ACB=90°,

???乙CFM=90°-45°=45°,

???乙CFM=Z-M,

???CF=CM,

???CF=BE,

在中,=45°,

.AD<2

??,cosa—F

???AF=yJ~2AD,

???AC=AF+FC,

:?AC=y[2AD+FC,

第14頁,共17頁

???CF=BE,BC=AC,

BC=y/~2AD+BE-

28.解:⑴?.T(2,0),

0A的垂直平分線為x=1,CM=2,

??.C4不是“關聯(lián)點”,

-3),C2(l,0),C3Q苧),

oc1=/To,。。2=1,0c3=苧,

?.?^ox=^<7To,

??.C1,。3是線段。4的“關聯(lián)點”,

故答案為:的,C3;

(2)⑦由(1)知,P在直線x=1上,

P是線段。B的“強關聯(lián)點”,

:.乙POB=30°,

8在直線y=上,

tanz.BOA=苧,

.-.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論