



下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
基于用戶軌跡的興趣推薦研究的國(guó)內(nèi)外文獻(xiàn)綜述本文主要根據(jù)用戶的行為軌跡來研究用戶的下一個(gè)興趣點(diǎn)推薦方法,具體可分為用戶行為預(yù)測(cè)分析和下一個(gè)興趣點(diǎn)推薦方法這兩個(gè)方面。下面將從這兩個(gè)方面來闡述己有的相關(guān)工作。1.1興趣點(diǎn)推薦早期對(duì)POI推薦的研究主要集中在使用協(xié)同過濾(CF)估計(jì)用戶偏好,特別是基于矩陣分解(MF)的技術(shù)[2-5]。這些方法只能對(duì)用戶的靜態(tài)首選項(xiàng)建模。例如,當(dāng)居住在紐約的用戶到夏威夷度假時(shí),這些類型的推薦器可能仍然推薦位于紐約的POIs,因?yàn)樗麄儫o(wú)法捕獲用戶偏好的動(dòng)態(tài)。最近,基于深度學(xué)習(xí)的方法,如嵌入學(xué)習(xí)[6-8],神經(jīng)協(xié)同過濾[9-10]、潛在因子模型和度量學(xué)習(xí)模型[11-12]在許多推薦系統(tǒng)中都取得了很好的性能。Cheng等人[13]的開創(chuàng)性的提出了一種嵌入個(gè)性化馬爾科夫鏈和局部區(qū)域的矩陣分解方法。受RNN在順序數(shù)據(jù)建模中的成功啟發(fā),基于RNN的方法在next-POI推薦領(lǐng)域變得非常普遍。例如,ST-RNN模型擴(kuò)展了RNN來建模局部時(shí)間和空間上下文。CARA通過利用GRU的gate機(jī)制捕捉用戶的動(dòng)態(tài)偏好。TMCA和STGN分別采用基于LSTM和門控LSTM框架學(xué)習(xí)時(shí)空上下文。DeepMove設(shè)計(jì)了一種多模態(tài)RNN來捕捉順序轉(zhuǎn)移。以上這些方法的提出,極大的擴(kuò)展了人們解決興趣點(diǎn)推薦問題的思路,并為未來相關(guān)問題的解決打下基礎(chǔ)。1.2下一個(gè)興趣點(diǎn)推薦興趣點(diǎn)推薦已經(jīng)吸引了很多產(chǎn)業(yè)界和學(xué)術(shù)界的研究。下一個(gè)興趣點(diǎn)推薦是一般的興趣點(diǎn)的延伸,根據(jù)用戶的歷史簽到信息給用戶推薦將要訪問的下一個(gè)興趣點(diǎn)列表,下一個(gè)興趣點(diǎn)推薦經(jīng)常會(huì)被看成序列推薦問題。目前已經(jīng)有很多方法被應(yīng)用到下一個(gè)興趣點(diǎn)推薦中,例如基于潛在因子模型的方法、基于馬爾可夫鏈模型的方法、嵌入表示模型的方法、以及神經(jīng)網(wǎng)絡(luò)模型的方法等。本文主要研究下一個(gè)興趣點(diǎn)推薦問題。下一個(gè)興趣點(diǎn)與傳統(tǒng)的一般興趣點(diǎn)推薦不同,在傳統(tǒng)的興趣點(diǎn)推薦中,類似于一般的商品(圖書,電影,音樂)推薦等,通常使用協(xié)同過濾的思想給用戶推薦用戶在未來將要訪問的商品,基于矩陣分解的算法是協(xié)同過濾算法最先進(jìn)的算法。該算法是基于相似的用戶通常有相似的品味的思想進(jìn)行興趣點(diǎn)推薦,它首先用隨機(jī)初始的向量表示用戶和項(xiàng)目的潛在因子,通過對(duì)用戶歷史訪問興趣得到用戶和興趣點(diǎn)的潛在因子表示,在推薦過程中,根據(jù)用戶和興趣點(diǎn)的潛在因子的內(nèi)積得到用戶未來訪問興趣點(diǎn)的概率,最終得到用戶TOP-K個(gè)推薦列表。在一般的興趣點(diǎn)推薦中,它只是根據(jù)用戶的訪問偏好推薦用戶未來訪問興趣點(diǎn)的可能性(比如未來的一天內(nèi)或者一年),嚴(yán)重忽略了用戶歷史簽到興趣點(diǎn)之間的序列關(guān)系。比如用戶按序列順序訪問A,B,C三個(gè)景點(diǎn),在一般的興趣點(diǎn)推薦中,推薦的三個(gè)景點(diǎn)是由用戶的偏好得到,它們之間沒有任何順序關(guān)系。然而在下一個(gè)興趣點(diǎn)推薦中,用戶的序列訪問行為通常對(duì)于下一個(gè)興趣點(diǎn)也具有很重要的影響,因此在下一個(gè)興趣點(diǎn)中用戶的推薦列表是隨著簽到信息時(shí)刻變化,且用戶的每次移動(dòng)都會(huì)導(dǎo)致推薦列表劇烈的變化。許多的研究通常會(huì)把下一個(gè)興趣點(diǎn)推薦問題看成是序列推薦問題ADDINCSL_CITATION{"citationItems":[{"id":"ITEM-1","itemData":{"DOI":"10.1016/j.ins.2019.12.006","author":[{"dropping-particle":"","family":"Zhang","given":"Lu","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Sun","given":"Zhu","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Zhang","given":"Jie","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Kloeden","given":"Horst","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Klanner","given":"Felix","non-dropping-particle":"","parse-names":false,"suffix":""}],"id":"ITEM-1","issued":{"date-parts":[["2020"]]},"page":"169-190","publisher":"ElsevierInc.","title":"ModelinghierarchicalcategorytransitionfornextPOIrecommendationwithuncertaincheck-ins","type":"article-journal","volume":"515"},"uris":["/documents/?uuid=abbd42db-8316-4608-aebb-353efa9d40ef"]}],"mendeley":{"formattedCitation":"<sup>[27]</sup>","plainTextFormattedCitation":"[27]","previouslyFormattedCitation":"<sup>[27]</sup>"},"properties":{"noteIndex":0},"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[27]。文獻(xiàn)ADDINCSL_CITATION{"citationItems":[{"id":"ITEM-1","itemData":{"abstract":"Venuerecommendationaimstoassistusersbymakingpersonalisedsuggestionsofvenuestovisit,buildingupondataavailablefromlocation-basedsocialnetworks(LBSNs)suchasFoursquare.Aparticularchallengeforthistaskiscontext-awarevenuerecommendation(CAVR),whichadditionallytakesthesurroundingcontextoftheuser(e.g.theuser'slocationandthetimeofday)intoaccountinordertoprovidemorerelevantvenuesuggestions.ToaddressthechallengesofCAVR,wedescribetwoapproachesthatexploitwordembeddingtechniquestoinferthevector-spacerepresentationsofvenues,users'existingpreferences,andusers'contextualpreferences.OurevaluationuponthetestcollectionoftheTREC2015ContextualSuggestiontrackdemonstratesthatwecansignificantlyenhancetheeffectivenessofastate-of-the-artvenuerecommendationapproach,aswellasproducecontext-awarerecommendationsthatareatleastaseffectiveasthetopTREC2015systems.","author":[{"dropping-particle":"","family":"Manotumruksa","given":"Jarana","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Macdonald","given":"Craig","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Ounis","given":"Iadh","non-dropping-particle":"","parse-names":false,"suffix":""}],"id":"ITEM-1","issued":{"date-parts":[["2016"]]},"page":"2-5","title":"ModellingUserPreferencesusingWordEmbeddingsforContext-AwareVenueRecommendation","type":"article-journal"},"uris":["/documents/?uuid=14873e01-13ec-48c2-aaf1-5253b6844c0b"]}],"mendeley":{"formattedCitation":"<sup>[32]</sup>","plainTextFormattedCitation":"[32]","previouslyFormattedCitation":"<sup>[32]</sup>"},"properties":{"noteIndex":0},"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[14]提出了一種用于POI推薦的基于排名的地理因子分解方法,稱為RankGeoFM。該模型考慮到簽到頻率表征了用戶的訪問偏好,并通過對(duì)興趣點(diǎn)的正確排序來學(xué)習(xí)因子分解。該模型可以很容易地將不同類型的上下文信息,如地理影響和時(shí)間影響納入其中。由于用戶-興趣點(diǎn)矩陣的稀疏性帶來了嚴(yán)峻的挑戰(zhàn)。為了應(yīng)對(duì)這一挑戰(zhàn),文獻(xiàn)ADDINCSL_CITATION{"citationItems":[{"id":"ITEM-1","itemData":{"DOI":"10.1145/2623330.2623638","ISBN":"9781450329569","abstract":"Point-of-Interest(POI)recommendationhasbecomeanimportantmeanstohelppeoplediscoverattractivelocations.However,extremesparsityofuser-POImatricescreatesaseverechallenge.Tocopewiththischallenge,viewingmobilityrecordsonlocation-basedsocialnetworks(LBSNs)asimplicitfeedbackforPOIrecommendation,wefirstproposetoexploitweightedmatrixfactorizationforthistasksinceitusuallyservescollaborativefilteringwithimplicitfeedbackbetter.Besides,researchershaverecentlydiscoveredaspatialclusteringphenomenoninhumanmobilitybehaviorontheLBSNs,i.e.,individualvisitinglocationstendtoclustertogether,andalsodemonstrateditseffectivenessinPOIrecommendation,thusweincorporateitintothefactorizationmodel.Particularly,weaugmentusers'andPOIs'latentfactorsinthefactorizationmodelwithactivityareavectorsofusersandinfluenceareavectorsofPOIs,respectively.Basedonsuchanaugmentedmodel,wenotonlycapturethespatialclusteringphenomenonintermsoftwo-dimensionalkerneldensityestimation,butwealsoexplainwhytheintroductionofsuchaphenomenonintomatrixfactorizationhelpstodealwiththechallengefrommatrixsparsity.Wethenevaluatetheproposedalgorithmonalarge-scaleLBSNdataset.Theresultsindicatethatweightedmatrixfactorizationissuperiortootherformsoffactorizationmodelsandthatincorporatingthespatialclusteringphenomenonintomatrixfactorizationimprovesrecommendationperformance.?2014ACM.","author":[{"dropping-particle":"","family":"Lian","given":"Defu","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Zhao","given":"Cong","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Xie","given":"Xing","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Sun","given":"Guangzhong","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Chen","given":"Enhong","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Rui","given":"Yong","non-dropping-particle":"","parse-names":false,"suffix":""}],"container-title":"ProceedingsoftheACMSIGKDDInternationalConferenceonKnowledgeDiscoveryandDataMining","id":"ITEM-1","issued":{"date-parts":[["2014"]]},"page":"831-840","title":"GeoMF:Jointgeographicalmodelingandmatrixfactorizationforpoint-of-interestrecommendation","type":"paper-conference"},"uris":["/documents/?uuid=3e562ae9-ac7e-40a4-91d1-b8b99cae7122"]}],"mendeley":{"formattedCitation":"<sup>[30]</sup>","plainTextFormattedCitation":"[30]","previouslyFormattedCitation":"<sup>[30]</sup>"},"properties":{"noteIndex":0},"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[15]首次提出利用加權(quán)矩陣分解來解決這一問題,因?yàn)樗ǔD芨玫胤?wù)于隱式反饋的協(xié)同過濾。文獻(xiàn)ADDINCSL_CITATION{"citationItems":[{"id":"ITEM-1","itemData":{"DOI":"10.1145/1772690.1772773","ISBN":"9781605587998","abstract":"Recommendersystemsareanimportantcomponentofmanywebsites.Twoofthemostpopularapproachesarebasedonmatrixfactorization(MF)andMarkovchains(MC).MFmethodslearnthegeneraltasteofauserbyfactorizingthematrixoverobserveduser-itempreferences.Ontheotherhand,MCmethodsmodelsequentialbehaviorbylearningatransitiongraphoveritemsthatisusedtopredictthenextactionbasedontherecentactionsofauser.Inthispaper,wepresentamethodbringingbothapproachestogether.OurmethodisbasedonpersonalizedtransitiongraphsoverunderlyingMarkovchains.Thatmeansforeachuseranowntransitionmatrixislearned-thusintotalthemethodusesatransitioncube.Astheobservationsforestimatingthetransitionsareusuallyverylimited,ourmethodfactorizesthetransitioncubewithapairwiseinteractionmodelwhichisaspecialcaseoftheTuckerDecomposition.WeshowthatourfactorizedpersonalizedMC(FPMC)modelsubsumesbothacommonMarkovchainandthenormalmatrixfactorizationmodel.Forlearningthemodelparameters,weintroduceanadaptionoftheBayesianPersonalizedRanking(BPR)frameworkforsequentialbasketdata.Empirically,weshowthatourFPMCmodeloutperformsboththecommonmatrixfactorizationandtheunpersonalizedMCmodelbothlearnedwithandwithoutfactorization.?2010InternationalWorldWideWebConferenceCommittee(IW3C2).","author":[{"dropping-particle":"","family":"Rendle","given":"Steffen","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Freudenthaler","given":"Christoph","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Schmidt-Thieme","given":"Lars","non-dropping-particle":"","parse-names":false,"suffix":""}],"container-title":"Proceedingsofthe19thInternationalConferenceonWorldWideWeb,WWW'10","id":"ITEM-1","issued":{"date-parts":[["2010"]]},"note":"FromDuplicate1(FactorizingpersonalizedMarkovchainsfornext-basketrecommendation-Rendle,Steffen;Freudenthaler,Christoph;Schmidt-Thieme,Lars)\n\n2012年的FPMC不加地理位置\n\nFromDuplicate2(FactorizingpersonalizedMarkovchainsfornext-basketrecommendation-Rendle,Steffen;Freudenthaler,Christoph;Schmidt-Thieme,Lars)\n\nFPMC模型沒有地理位置限制\n\nFPMC是基于馬爾科夫鏈的模型。通過markov鏈對(duì)用戶的簽到信息建模。使用個(gè)性markov鏈和矩陣分解算法整合序列信息和用戶的一般偏好進(jìn)行next-basket推薦。","page":"811-820","title":"FactorizingpersonalizedMarkovchainsfornext-basketrecommendation","type":"article-journal"},"uris":["/documents/?uuid=12f1a349-c88e-43b9-b6da-9adb731d1013"]}],"mendeley":{"formattedCitation":"<sup>[39]</sup>","plainTextFormattedCitation":"[39]","previouslyFormattedCitation":"<sup>[39]</sup>"},"properties":{"noteIndex":0},"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[16]考慮到矩陣分解的方法難于對(duì)興趣點(diǎn)序列信息建模,而基于馬爾科夫鏈的方法能夠捕獲用戶的簽到序列信息,因此文獻(xiàn)ADDINCSL_CITATION{"citationItems":[{"id":"ITEM-1","itemData":{"DOI":"10.1145/1772690.1772773","ISBN":"9781605587998","abstract":"Recommendersystemsareanimportantcomponentofmanywebsites.Twoofthemostpopularapproachesarebasedonmatrixfactorization(MF)andMarkovchains(MC).MFmethodslearnthegeneraltasteofauserbyfactorizingthematrixoverobserveduser-itempreferences.Ontheotherhand,MCmethodsmodelsequentialbehaviorbylearningatransitiongraphoveritemsthatisusedtopredictthenextactionbasedontherecentactionsofauser.Inthispaper,wepresentamethodbringingbothapproachestogether.OurmethodisbasedonpersonalizedtransitiongraphsoverunderlyingMarkovchains.Thatmeansforeachuseranowntransitionmatrixislearned-thusintotalthemethodusesatransitioncube.Astheobservationsforestimatingthetransitionsareusuallyverylimited,ourmethodfactorizesthetransitioncubewithapairwiseinteractionmodelwhichisaspecialcaseoftheTuckerDecomposition.WeshowthatourfactorizedpersonalizedMC(FPMC)modelsubsumesbothacommonMarkovchainandthenormalmatrixfactorizationmodel.Forlearningthemodelparameters,weintroduceanadaptionoftheBayesianPersonalizedRanking(BPR)frameworkforsequentialbasketdata.Empirically,weshowthatourFPMCmodeloutperformsboththecommonmatrixfactorizationandtheunpersonalizedMCmodelbothlearnedwithandwithoutfactorization.?2010InternationalWorldWideWebConferenceCommittee(IW3C2).","author":[{"dropping-particle":"","family":"Rendle","given":"Steffen","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Freudenthaler","given":"Christoph","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Schmidt-Thieme","given":"Lars","non-dropping-particle":"","parse-names":false,"suffix":""}],"container-title":"Proceedingsofthe19thInternationalConferenceonWorldWideWeb,WWW'10","id":"ITEM-1","issued":{"date-parts":[["2010"]]},"note":"FromDuplicate1(FactorizingpersonalizedMarkovchainsfornext-basketrecommendation-Rendle,Steffen;Freudenthaler,Christoph;Schmidt-Thieme,Lars)\n\n2012年的FPMC不加地理位置\n\nFromDuplicate2(FactorizingpersonalizedMarkovchainsfornext-basketrecommendation-Rendle,Steffen;Freudenthaler,Christoph;Schmidt-Thieme,Lars)\n\nFPMC模型沒有地理位置限制\n\nFPMC是基于馬爾科夫鏈的模型。通過markov鏈對(duì)用戶的簽到信息建模。使用個(gè)性markov鏈和矩陣分解算法整合序列信息和用戶的一般偏好進(jìn)行next-basket推薦。","page":"811-820","title":"FactorizingpersonalizedMarkovchainsfornext-basketrecommendation","type":"article-journal"},"uris":["/documents/?uuid=12f1a349-c88e-43b9-b6da-9adb731d1013"]}],"mendeley":{"formattedCitation":"<sup>[39]</sup>","plainTextFormattedCitation":"[39]","previouslyFormattedCitation":"<sup>[39]</sup>"},"properties":{"noteIndex":0},"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[16]引進(jìn)了個(gè)性化的馬爾科夫鏈,通過結(jié)合矩陣分解和一階馬爾科夫兩者的優(yōu)勢(shì)分別對(duì)用戶的偏好和訪問的商品的序列信息進(jìn)行建模,提出個(gè)性化的馬爾科夫鏈分解的算法(FPMC)對(duì)用戶購(gòu)買商品進(jìn)行建模,用于給用戶推薦用戶下一個(gè)購(gòu)買的商品,同時(shí)通過在數(shù)據(jù)集上的實(shí)驗(yàn)結(jié)果也顯示出FPMC的方法要優(yōu)于一般的矩陣分解算法和單純的基于馬爾科夫模型的算法。與下一個(gè)商品推薦不同,由于興趣點(diǎn)推薦中不僅受到序列信息和用戶偏好的影響,用戶的地理位置信息對(duì)于下一個(gè)興趣點(diǎn)推薦也有一定程度的影響,文獻(xiàn)ADDINCSL_CITATION{"citationItems":[{"id":"ITEM-1","itemData":{"ISBN":"9781577357384","ISSN":"10450823","abstract":"TherapidlygrowingofLocation-basedSocialNetworks(LBSNs)providesavastamountofcheck-indata,whichenablesmanyservices,e.g.,point-of-interest(POI)recommendation.Inthispaper,westudythenextnewPOIrecommendationprobleminwhichnewPOIswithrespecttousers'currentlocationaretoberecommended.Thechallengeliesinthedifficultyinpreciselylearningusers'sequentialinformationandpersonalizingtherecommendationmodel.Tothisend,weresorttotheMetricEmbeddingmethodfortherecommendation,whichavoidsdrawbacksoftheMatrixFactorizationtechnique.Weproposeapersonalizedrankingmetricembeddingmethod(PRME)tomodelpersonalizedcheck-insequences.WefurtherdevelopaPRME-Gmodel,whichintegratessequentialinformation,individualpreference,andgeographicalinfluence,toimprovetherecommendationperformance.Experimentsontworeal-worldLBSNdatasetsdemonstratethatournewalgorithmoutperformsthestate-of-the-artnextPOIrecommendationmethods.","author":[{"dropping-particle":"","family":"Feng","given":"Shanshan","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Li","given":"Xutao","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Zeng","given":"Yifeng","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Cong","given":"Gao","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Chee","given":"YeowMeng","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Yuan","given":"Quan","non-dropping-particle":"","parse-names":false,"suffix":""}],"container-title":"IJCAIInternationalJointConferenceonArtificialIntelligence","id":"ITEM-1","issued":{"date-parts":[["2015"]]},"note":"PRME-G\n本文唯一的創(chuàng)新,通過嵌入的方法對(duì)興趣點(diǎn)序列偏好和用戶偏好建模。\n本文使用了2個(gè)嵌入向量空間。序列變換嵌入向量空間,用戶和興趣點(diǎn)向量嵌入空間。分別對(duì)用戶偏好和序列偏好建模。\n針對(duì)FPMC的創(chuàng)新有一點(diǎn)。比如A-B,B-C。由于MC方法的獨(dú)立性,A到C的潛在轉(zhuǎn)移可能性被忽略。\n但是ME使用嵌入方法,A,B,C用嵌入空間表示,A,C的轉(zhuǎn)移可能性也可以被捕獲。\n因此ME的方法由于MF的方法。","page":"2069-2075","title":"PersonalizedrankingmetricembeddingfornextnewPOIrecommendation","type":"paper-conference","volume":"2015-Janua"},"uris":["/documents/?uuid=a3d32887-ce52-489b-b7ff-eb79ffda9c4b"]}],"mendeley":{"formattedCitation":"<sup>[42]</sup>","plainTextFormattedCitation":"[42]","previouslyFormattedCitation":"<sup>[42]</sup>"},"properties":{"noteIndex":0},"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[17]提出了PRME模型,該模型同時(shí)考慮了用戶偏好和序列信息的影響,并利用度量嵌入的方法對(duì)用戶的簽到數(shù)據(jù)信息進(jìn)行建模。它使用兩個(gè)嵌入空間,用戶偏好嵌入空間和序列信息嵌入空間。在用戶偏好嵌入空間中用戶與興趣點(diǎn)在嵌入空間的距離表示用戶對(duì)興趣點(diǎn)的偏好。在序列嵌入空間中,興趣點(diǎn)之間的的嵌入距離表示興趣點(diǎn)之間轉(zhuǎn)化的可能。然后通過權(quán)重的形式整合用戶偏好和序列信息的影響。為了整合地理位置影響,文獻(xiàn)ADDINCSL_CITATION{"citationItems":[{"id":"ITEM-1","itemData":{"ISBN":"9781577357384","ISSN":"10450823","abstract":"TherapidlygrowingofLocation-basedSocialNetworks(LBSNs)providesavastamountofcheck-indata,whichenablesmanyservices,e.g.,point-of-interest(POI)recommendation.Inthispaper,westudythenextnewPOIrecommendationprobleminwhichnewPOIswithrespecttousers'currentlocationaretoberecommended.Thechallengeliesinthedifficultyinpreciselylearningusers'sequentialinformationandpersonalizingtherecommendationmodel.Tothisend,weresorttotheMetricEmbeddingmethodfortherecommendation,whichavoidsdrawbacksoftheMatrixFactorizationtechnique.Weproposeapersonalizedrankingmetricembeddingmethod(PRME)tomodelpersonalizedcheck-insequences.WefurtherdevelopaPRME-Gmodel,whichintegratessequentialinformation,individualpreference,andgeographicalinfluence,toimprovetherecommendationperformance.Experimentsontworeal-worldLBSNdatasetsdemonstratethatournewalgorithmoutperformsthestate-of-the-artnextPOIrecommendationmethods.","author":[{"dropping-particle":"","family":"Feng","given":"Shanshan","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Li","given":"Xutao","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Zeng","given":"Yifeng","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Cong","given":"Gao","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Chee","given":"YeowMeng","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Yuan","given":"Quan","non-dropping-particle":"","parse-names":false,"suffix":""}],"container-title":"IJCAIInternationalJointConferenceonArtificialIntelligence","id":"ITEM-1","issued":{"date-parts":[["2015"]]},"note":"PRME-G\n本文唯一的創(chuàng)新,通過嵌入的方法對(duì)興趣點(diǎn)序列偏好和用戶偏好建模。\n本文使用了2個(gè)嵌入向量空間。序列變換嵌入向量空間,用戶和興趣點(diǎn)向量嵌入空間。分別對(duì)用戶偏好和序列偏好建模。\n針對(duì)FPMC的創(chuàng)新有一點(diǎn)。比如A-B,B-C。由于MC方法的獨(dú)立性,A到C的潛在轉(zhuǎn)移可能性被忽略。\n但是ME使用嵌入方法,A,B,C用嵌入空間表示,A,C的轉(zhuǎn)移可能性也可以被捕獲。\n因此ME的方法由于MF的方法。","page":"2069-2075","title":"PersonalizedrankingmetricembeddingfornextnewPOIrecommendation","type":"paper-conference","volume":"2015-Janua"},"uris":["/documents/?uuid=a3d32887-ce52-489b-b7ff-eb79ffda9c4b"]}],"mendeley":{"formattedCitation":"<sup>[42]</sup>","plainTextFormattedCitation":"[42]","previouslyFormattedCitation":"<sup>[42]</sup>"},"properties":{"noteIndex":0},"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[17]進(jìn)一步通過地理位置作為權(quán)重信息通過指數(shù)衰減的形式控制用戶訪問下一個(gè)興趣點(diǎn)的不同偏好。文獻(xiàn)ADDINCSL_CITATION{"citationItems":[{"id":"ITEM-1","itemData":{"DOI":"10.1145/2983323.2983711","ISBN":"9781450340731","abstract":"Withtherapidprevalenceofsmartmobiledevicesandthedramaticproliferationoflocation-basedsocialnetworks(LB-SNs),location-basedrecommendationhasbecomeanimportantmeanstohelppeoplediscoverattractiveandinterestingpointsofinterest(POIs).However,extremesparsityofuser-POImatrixandcold-startissuecreateseverechallenges,causingCF-basedmethodstodegradesignificantlyintheirrecommendationperformance.Moreover,location-basedrecommendationrequiresspatiotemporalcontextawarenessanddynamictrackingoftheuser'slatestpreferencesinareal-timemanner.Toaddressthesechallenges,westandonrecentadvancesinembeddinglearningtechniquesandproposeagenericgraph-basedembeddingmodel,calledGE,inthispaper.GEjointlycapturesthesequentialeffect,geographicalinfluence,temporalcycliceffectandsemanticeffectinaunifiedwaybyembeddingthefourcorrespondingrelationalgraphs(POI-POI,POI-Region,POI-TimeandPOI-Word)intoasharedlowdimensionalspace.Then,tosupportreal-timerecommendation,wedevelopanoveltime-decaymethodtodynamicallycomputetheuser'slatestpreferencesbasedontheembeddingofhis/herchecked-inPOIslearntinthelatents-pace.Weconductextensiveexperimentstoevaluatetheperformanceofourmodelontworeallarge-scaledatasets,andtheexperimentalresultsshowitssuperiorityoverothercompetitors,especiallyinrecommendingcold-startPOIs.Besides,westudythecontributionofeachfactortoimprovelocation-basedrecommendation,andfindthatbothsequentialeffectandtemporalcycliceffectplaymoreimportantrolesthangeographicalinfluenceandsemanticeffect.","author":[{"dropping-particle":"","family":"Xie","given":"Min","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Yin","given":"Hongzhi","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Wang","given":"Hao","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Xu","given":"Fanjiang","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Chen","given":"Weitong","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Wang","given":"Sen","non-dropping-particle":"","parse-names":false,"suffix":""}],"container-title":"InternationalConferenceonInformationandKnowledgeManagement,Proceedings","id":"ITEM-1","issued":{"date-parts":[["2016"]]},"note":"GE\n興趣點(diǎn)圖嵌入的方法\n通過嵌入四個(gè)圖,poi-poi,poi-region,poi-time,poi-word空間。","page":"15-24","title":"Learninggraph-basedpoiembeddingforlocation-basedrecommendation","type":"paper-conference","volume":"24-28-Octo"},"uris":["/documents/?uuid=350c5ac7-4566-4d6f-9437-47fdb13e97a9"]}],"mendeley":{"formattedCitation":"<sup>[43]</sup>","plainTextFormattedCitation":"[43]"},"properties":{"noteIndex":0},"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[18]針對(duì)因子分解方法無(wú)法對(duì)時(shí)空上下文和序列信息建模問題,提出了一種基于圖嵌入的模型,叫做GE,該模型能夠同時(shí)捕獲序列影響,地理影響,時(shí)空周期影響以及語(yǔ)義信息。它通過一種統(tǒng)一的方式將四對(duì)相應(yīng)的關(guān)系圖(興趣點(diǎn)-興趣點(diǎn),興趣點(diǎn)-區(qū)域,興趣點(diǎn)-時(shí)間,興趣點(diǎn)-單詞)嵌入到共享的低維空間中。之后根據(jù)經(jīng)過訓(xùn)練后的空間興趣點(diǎn)嵌入向量信息和時(shí)間衰減的影響計(jì)算用戶訪問不同興趣點(diǎn)的偏好。文獻(xiàn)ADDINCSL_CITATION{"citationItems":[{"id":"ITEM-1","itemData":{"abstract":"Weapplyrecurrentneuralnetworks(RNN)onanewdomain,namelyrecommendersystems.Real-liferecommendersystemsoftenfacetheproblemofhavingtobaserecommendationsonlyonshortsession-baseddata(e.g.asmallsportswarewebsite)insteadoflonguserhistories(asinthecaseofNetflix).Inthissituationthefrequentlypraisedmatrixfactorizationapproachesarenotaccurate.Thisproblemisusuallyovercomeinpracticebyresortingtoitem-to-itemrecommendations,i.e.recommendingsimilaritems.Wearguethatbymodelingthewholesession,moreaccuraterecommendationscanbeprovided.WethereforeproposeanRNN-basedapproachforsession-basedrecommendations.OurapproachalsoconsiderspracticalaspectsofthetaskandintroducesseveralmodificationstoclassicRNNssuchasarankinglossfunctionthatmakeitmoreviableforthisspecificproblem.Experimentalresultsontwodata-setsshowmarkedimprovementsoverwidelyusedapproaches.","author":[{"dropping-particle":"","family":"Hidasi","given":"Balázs","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Karatzoglou","given":"Alexandros","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Baltrunas","given":"Linas","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Tikk","given":"Domonkos","non-dropping-particle":"","parse-names":false,"suffix":""}],"container-title":"4thInternationalConferenceonLearningRepresentations,ICLR2016-ConferenceTrackProceedings","id":"ITEM-1","issued":{"date-parts":[["2016"]]},"note":"GRU4Rec","page":"1-10","title":"Session-basedrecommendationswithrecurrentneuralnetworks","type":"article-journal"},"uris":["/documents/?uuid=9b6f6068-146e-44f4-a335-368eec8f82bf"]}],"mendeley":{"formattedCitation":"<sup>[47]</sup>","plainTextFormattedCitation":"[47]","previouslyFormattedCitation":"<sup>[46]</sup>"},"properties":{"noteIndex":0},"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[19]提出GRU4Rec整合序列信息進(jìn)行商品模型,它是最初的嘗試將GRU模型引入到推薦系統(tǒng)中。由于在現(xiàn)實(shí)生活中經(jīng)常會(huì)面臨短會(huì)話的問題,在基于會(huì)話的模型中,沒有用戶的ID存在,只有用戶的一段匿名的簽到記錄。該模型通過GRU模型對(duì)用戶的最近的一段購(gòu)買記錄建模。作者針對(duì)GRU模型提出了兩個(gè)創(chuàng)新,一是通過對(duì)GRU模型訓(xùn)練的批次改進(jìn)減少GRU模型的訓(xùn)練時(shí),二是提出了TOP1損失函數(shù),相比于傳統(tǒng)的BPR算法具有更好的表現(xiàn)效果。文獻(xiàn)ADDINCSL_CITATION{"citationItems":[{"id":"ITEM-1","itemData":{"DOI":"10.1109/TSMC.2014.2327053","ISSN":"10834427","abstract":"Withtherecentsurgeoflocationbasedsocialnetworks(LBSNs),activitydataofmillionsofusershasbecomeattainable.Thisdatacontainsnotonlyspatialandtemporalstampsofuseractivity,butalsoitssemanticinformation.LBSNscanhelptounderstandmobileusers'spatialtemporalactivitypreference(STAP),whichcanenableawiderangeofubiquitousapplications,suchaspersonalizedcontext-awarelocationrecommendationandgroup-orientedadvertisement.However,modelingsuchuser-specificSTAPneedstotacklehigh-dimensionaldata,i.e.,user-location-time-activityquadruples,whichiscomplicatedandusuallysuffersfromadatasparsityproblem.Inordertoaddressthisproblem,weproposeaSTAPmodel.Itfirstmodelsthespatialandtemporalactivitypreferenceseparately,andthenusesaprinciplewaytocombinethemforpreferenceinference.Inordertocharacterizetheimpactofspatialfeaturesonuseractivitypreference,weproposethenotionofpersonalfunctionalregionandrelatedparameterstomodelandinferuserspatialactivitypreference.InordertomodeltheusertemporalactivitypreferencewithsparseuseractivitydatainLBSNs,weproposetoexploitthetemporalactivitysimilarityamongdifferentusersandapplynonnegativetensorfactorizationtocollaborativelyinfertemporalactivitypreference.Finally,weputforwardacontextawarefusionframeworktocombinethespatialandtemporalactivitypreferencemodelsforpreferenceinference.Weevaluateourproposedapproachonthreereal-worlddatasetscollectedfromNewYorkandTokyo,andshowthatourSTAPmodelconsistentlyoutperformsthebaselineapproachesinvarioussettings.","author":[{"dropping-particle":"","family":"Yang","given":"Dingqi","non-dropping-parti
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程項(xiàng)目法務(wù)支持試題及答案
- 白水縣2025-2026學(xué)年三上數(shù)學(xué)期末檢測(cè)試題含解析
- 首飾營(yíng)銷方案設(shè)計(jì)
- 2025年工程經(jīng)濟(jì)備考路上試題及答案
- 谷雨品牌新媒體營(yíng)銷案例深度解析
- 知識(shí)整合的2025市政工程試題及答案
- 青春期心理健康安全教育
- 協(xié)作之美的2025年市政工程考試試題及答案
- 釘釘項(xiàng)目管理功能解析
- 項(xiàng)目檔案管理試題及答案
- 旅游經(jīng)濟(jì)專業(yè)知識(shí)和實(shí)務(wù)經(jīng)濟(jì)師考試(中級(jí))試卷及解答參考
- 企業(yè)間無(wú)償借款合同模板
- 財(cái)務(wù)管理實(shí)務(wù)(浙江廣廈建設(shè)職業(yè)技術(shù)大學(xué))知到智慧樹章節(jié)答案
- 2022-2023學(xué)年廣東省東莞市高一(下)期末地理試卷
- 酒店食品安全知識(shí)培訓(xùn)
- 生活水泵房管理制度
- 初三班級(jí)學(xué)生中考加油家長(zhǎng)會(huì)課件
- 市人民法院公開招考審判輔助人員考試題及答案
- 幼兒園 中班語(yǔ)言繪本《章魚先生賣雨傘》
- 提高混淆效果研究
- 烹飪專業(yè)考評(píng)員培訓(xùn)
評(píng)論
0/150
提交評(píng)論