汽車變速箱動態(tài)建模輪齒局部缺陷的早期檢測外文文獻翻譯@中英文翻譯@外文翻譯_第1頁
汽車變速箱動態(tài)建模輪齒局部缺陷的早期檢測外文文獻翻譯@中英文翻譯@外文翻譯_第2頁
汽車變速箱動態(tài)建模輪齒局部缺陷的早期檢測外文文獻翻譯@中英文翻譯@外文翻譯_第3頁
汽車變速箱動態(tài)建模輪齒局部缺陷的早期檢測外文文獻翻譯@中英文翻譯@外文翻譯_第4頁
汽車變速箱動態(tài)建模輪齒局部缺陷的早期檢測外文文獻翻譯@中英文翻譯@外文翻譯_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

附 錄 A1 Dynamic Modeling of Vehicle Gearbox for Early Detection of Localized Tooth Defect ABSTRACT Dynamic modeling of the gear vibration is a useful tool to study the vibration response of a geared system under various gear parameters and operating cond itions. An improved understanding of vibration signal is required for early detection of incipient gear failure to achieve high reliability. However, the aim of this work is to make use of a 6-degree-of-freedom gear dynamic model including localized tooth defect for early detection of gear failure. The model consists of a gear pair, two shafts, two inertias representing load and prime mover and bearings. The model incorporates the effects of time-varying mesh stiffness and damping, backlash, excitation due to gear errors and modifications. The results indicate that the simulated signal shows that as the defect size increases the amplitude of the acceleration signal increases. The crest factor and kurtosis values of the simulated signal increase as the fault increases. Though the crest factor and kurtosis values give similar trends, kurtosis is a better indicator as compared to crest factor. KEYWORDS: Vibration acceleration, system modeling, Crest Factor, Kurtosis value, defect size, gear meshing, pinion, gear INTRODUCTION Much of the past research in the dynamic modeling area has concluded that an essential solution to the problem is to use a comprehensive computer modeling and simulation tool to aid the transmission design and experiments. These have been two major obstacles to such an approach: (1) Progress in understanding of the basic gear rattle phenomenon has been limited and slow. This is because the engine-clutch-transmission system involves some strong nonlinearities including gear backlash, multi-valued springs, dry friction, hysteresis, and the like. (2)The gear rattle is a system problem and not only problem of gear teeth. Even through the research and industrial community has discussed the difficulties in varies stages of the problem, yet no thorough frame work covering the entire investigation process of such problem currently exists. This is largely due o the complexity of the power train system, which may make a computer analysis tool inefficient, in particularly when many different elements and clearances are encountered (e.g., gears, bearings, splines, synchronizers, and clutch). A comprehensive review of mathematical models used in gear dynamics, published before 1986, has been presented by. In this review, gear dynamic models without defects have been discussed. In the past few years, researchers have been working on the gear dynamic models which include defects like pitting, spalling, crack and broken tooth. A single-degree-of-freedom model is used which include the e4ffects of variable mesh stiffness, damping, gear errors, profile modifications and backlash. The effect of time-varying meshing damping is also included in this case, The solution is obtained by using the harmonic balance methods. A method of calculated the optimum profile modification has been proposed in order to obtain a zero vibration of the gear pair. They also proposed a linear approximate equation to mode the gear pair by using a single-degree-of freedom model Gear rattle vibration is a undesirable vibration for passenger cars and light trucks equipped with manual transmissions. Unlike automatic transmissions, manual transmission do not have the high viscous damping inherent to a hydrodynamic torque converter to suppress the impacting of gear teeth oscillating through their gear backlash. Therefore a significant level of vibration an be produced by the gear rattle and transmitted both inside the passenger compartment and outside the vehicle. Gear rattle, idle shake, and other vibration generated in the automobile driveline have become an important concern to automobile manufactures in their pursuit of an increased level of perception of high vibration quality. The torsional vibration o driveline is a major source of gear rattle vibration. The manual transmission produces gear rattle by the impacting of gear oscillating through their gear backlash. The impact collisions are transmitted to the transmission housing via shafts and bearings. The gear pair dynamic models including defects have been done by. The study suggests that little work has been done on modeling of gear vibration with defect and an accurate analytical procedure to predict gear vibrations in the presence of local tooth fault has yet to be developed.However, the purpose of this paper is to develop a multidegree-of-freedom nonlinear model for a gear pair that can be used to study the effect of lateral-torsional vibration coupling on vibration response in the presence of localized tooth defect. A typical fault signal is assumed to be impulsive in nature because of the way it is generated. The simulation artificially introduced pitting in gears in multi-stage automotive transmission gearbox at different operation conditions (load, speed, etc). The processing of simulated and experimental signals is also introduced. SIGNAL-PROCESSING TECHNIQUE Among various signal-processing techniques, crest factor and kurtosis analysis have been used for analyzing the whole vibration signal for the early detection of fault. In this section, crest factor and kurtosis value have been explained. MATHEMATICAL MODEL FORMULATION Helical gears are almost always used in automotive transmissions. The meshing stiffness of a helical tooth pair is time-varying, and was modeled as a series of suggested spur gears so that the simulation techniques for spur gears can be applied. where M is Module (mm), b is Face width (mm), is pressure angle (deg), is helix angle (deg) and D1 is pitch diameter (mm). 附 錄 A2 汽車變速箱動態(tài) 建模輪齒局部缺陷的早期檢測 摘要: 在研究齒輪系統(tǒng)中各種齒輪參數(shù)的振動響應(yīng)和操作條件時,齒輪振動的動態(tài)建模是一個非常有用的工具。對早期的齒輪檢測提出了一種改進理解的振動信號,但還沒達到高的可靠性。但是,這項工作的目的是利用一個 6 自由度的齒輪動力學(xué)模型對齒輪輪齒缺陷故障的早期檢測。該模型包括一對齒輪副、兩個軸、兩個慣性負載、動力傳動裝置和軸承。由于齒輪的誤差和變動,該模型被采用時受到時變嚙合剛度、阻尼、反彈和勵磁的影響。模擬信號顯示的結(jié)果表明,隨著缺陷尺寸的增加加速度信號的振幅增加。模擬信號的波峰因 素和峰值隨著缺陷的增加而增加。雖然波峰因素和峰值做同樣的趨勢,但和波峰因素相比峰值是一個比較好的指標(biāo)。 關(guān)鍵詞:振動加速度、系統(tǒng)建模、波峰因素、峰值、缺陷大小、齒輪嚙合、齒輪 引言: 在大多數(shù)過去的動態(tài)建模研究領(lǐng)域中,解決問題的重要辦法是全面使用計算機建模和仿真工具來輔助變速器的設(shè)計和實驗。這種方法有兩種主要的障礙:( 1)對齒輪傳動中噪聲基本認(rèn)識的進展是有限的和緩慢的。這是因為發(fā)動機離合器傳動系統(tǒng)中包括齒輪側(cè)隙、多值彈簧、非線性滯后等等。( 2)齒輪發(fā)出的噪聲是一個系統(tǒng)問題,并不是齒輪的唯一問題。既使 是工業(yè)研究領(lǐng)域已經(jīng)討論了這個問題在不同階段所出現(xiàn)的不同問題,但并沒有徹底覆蓋工作的框架,整個研究過程中的問題依然存在。這主要是由于列車電力系統(tǒng)的復(fù)雜性,可能導(dǎo)致你的計算機的分析工具效率不高,尤其是工作中遇到許多不同的因素和間隙(例如:齒輪、軸承、花鍵、同步器和離合器)。 在 1986 年出版之前,對齒輪動力學(xué)中提出的齒輪動態(tài)建模進行了審查。這次審查中,對不存在齒輪缺陷的齒輪動力學(xué)模型進行了討論。在過去的幾年里,研究人員對齒輪的動態(tài)模型缺陷進行了研究,其中包括點蝕、剝落、裂縫和齒輪折斷等。 單自由度系統(tǒng)模 型中,對嚙合剛度的影響包括 4 個方面的因素,阻尼、齒輪誤差、輪廓變

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論