


下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、An efficient algorithm for large scale stochastic nonlinear programming problems隨機(jī)非線性規(guī)劃問題 (The stochastic nonlinear programming problems, SNLP) 是一類被廣泛應(yīng)用的優(yōu)化問題。但 SNLP 問題的求解卻非常的困難,這是由于此類問題較復(fù)雜,計(jì)算工作量大,目前的算法都有一定的局限性。為此文獻(xiàn)提出了一個(gè)新的算法,the L-shaped BONUS,來求解大規(guī)模隨機(jī)非線性規(guī)劃問題。1. sampling based methods在隨機(jī)規(guī)劃問題中,當(dāng)不確定性變量
2、的概率分布已知的條件下,通常采用樣本近似的方法來逼近含隨機(jī)變量的函數(shù)。為了使函數(shù)近似的精度能達(dá)到要求,樣本數(shù)量要足夠大。Monte Carlo 取樣法被普遍采用以實(shí)現(xiàn)函數(shù)近似。圖 1 描述了sampling based methods 的求解步驟。這個(gè)求解框架圖類似于決定性問題,不同之處在于決定性模型被隨機(jī)性模型取代,陰影部分的隨機(jī)性模型可以用 Monte Carlo 方法近似。這類求解 SNLP 的方法中比較有代表性的兩種算法是 the sampling based L-shaped method and the stochastic decomposition algorithm。這類求解
3、方法主要的缺點(diǎn)是在每一次迭代中,隨機(jī)模型都要通過Monte Carlo 取樣的方式模擬一次。當(dāng)樣本數(shù)量很大時(shí),計(jì)算量就會(huì)變得很大。因此文獻(xiàn)提出了 BONUS (better optimization of nonlinear uncertain systems) 算法克服這個(gè)困難。 圖 1. the sampling based methods 計(jì)算框圖2. BONUSBONUS 算法采用 re-weighting scheme 跳過每次迭代中隨機(jī)模型的模擬,即每次迭代,只需計(jì)算一次就可得到期望值的近似,而不用每一個(gè)樣本都模擬一次。 開始的時(shí)候,首先產(chǎn)生一個(gè)不確定性變量的均勻分布。在第一次迭代
4、中,算法類似于標(biāo)準(zhǔn)的 L-shaped method,每個(gè)樣本都模擬一次,以決定不確定性模型的出口分布。在隨后的迭代中,當(dāng) Optimizer 需要對(duì)目標(biāo)函數(shù)的概率值做新的評(píng)估時(shí),一套新的樣本被重新抽取,但這次不需要對(duì)每一個(gè)樣本都計(jì)算,the re-weighting approach 被使用去近似新的出口函數(shù)的概率。這種方法采用了初始樣本,初始出口函數(shù)分布和新的樣本的信息去評(píng)估新的出口函數(shù)的概率。The re-weighting approach 是 importance sampling 概念的擴(kuò)展。即目標(biāo)分布可以通過設(shè)計(jì)分布 的樣本來估計(jì)。這些分布有各自的概率密度函數(shù)。假設(shè)隨機(jī)變量 的概
5、率密度函數(shù)為, 是 的函數(shù)。則的期望表示為:采用 importance sampling 概念,以上期望可以通過解另外一個(gè)期望 得到: 以上關(guān)系式中的樣本從分布 中抽取。分布 可以被設(shè)計(jì)以便得到想要的結(jié)果,如更小的變異。The weigh function 被定義為 的期望可以表示為 上式中 表示基本樣本集合,它們滿足均勻分布 。通過對(duì)每一樣本做模擬計(jì)算,可以得到出口函數(shù)的分布 。 表示新的樣本集合,它從分布 中抽取。通過以上方式可以估算隨機(jī)模型 的期望對(duì)于新的樣本集合。文獻(xiàn)將以上提出的BONUS 算法和標(biāo)準(zhǔn)的 L-shaped method 相結(jié)合,形成了 the L-shaped BONUS 算法,用以求解大規(guī)模隨機(jī)非線性規(guī)劃
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023-2029年中國(guó)視窗防護(hù)屏行業(yè)市場(chǎng)發(fā)展監(jiān)測(cè)及投資戰(zhàn)略規(guī)劃研究報(bào)告
- 2024-2030年中國(guó)生態(tài)畜牧行業(yè)市場(chǎng)全景分析及投資策略研究報(bào)告
- 噴霧裝置行業(yè)市場(chǎng)發(fā)展現(xiàn)狀及前景趨勢(shì)與投資分析研究報(bào)告(2024-2030)
- 2025年香料項(xiàng)目投資分析及可行性報(bào)告
- XX市城鎮(zhèn)污水管網(wǎng)新建改造工程可行性研究報(bào)告可行性研究報(bào)告
- 2025年中國(guó)古法瓷桿齊頭斗筆行業(yè)市場(chǎng)發(fā)展前景及發(fā)展趨勢(shì)與投資戰(zhàn)略研究報(bào)告
- 中國(guó)鐳射預(yù)涂膜行業(yè)調(diào)查報(bào)告
- 2020-2025年中國(guó)混凝土攪拌運(yùn)輸車行業(yè)市場(chǎng)調(diào)查研究及投資前景預(yù)測(cè)報(bào)告
- 中國(guó)無人清潔船行業(yè)市場(chǎng)前景預(yù)測(cè)及投資價(jià)值評(píng)估分析報(bào)告
- 廣東省清連中學(xué)2025年物理高二下期末預(yù)測(cè)試題含解析
- 《飛機(jī)電子顯示器顯示符號(hào)》
- 贏利:未來10年的經(jīng)營(yíng)能力
- 光伏支架風(fēng)荷載分析
- 頭等大事:脫發(fā)青年自救指南
- 馬拉色菌相關(guān)疾病診療指南(2022年版)
- 哈雷之約:基于指數(shù)成分股調(diào)整的選股策略
- 湖北省隨州市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會(huì)明細(xì)及行政區(qū)劃代碼
- 磁流體密封課件
- 樁基施工安全檢查表
- T∕CCIA 001-2022 面向網(wǎng)絡(luò)安全保險(xiǎn)的風(fēng)險(xiǎn)評(píng)估指引
- 高處作業(yè)審批表
評(píng)論
0/150
提交評(píng)論