楊氏模量的測量實驗報告_第1頁
楊氏模量的測量實驗報告_第2頁
楊氏模量的測量實驗報告_第3頁
楊氏模量的測量實驗報告_第4頁
楊氏模量的測量實驗報告_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、精選優(yōu)質文檔-傾情為你奉上 楊氏模量的測量實驗報告篇一:金屬材料楊氏模量的測定實驗報告 浙江中醫(yī)藥大學 學生物理實驗報告 實驗名稱 金屬材料楊氏模量的測定 學 院 信息技術學院 專業(yè) 醫(yī)學信息工程 班級一班 報告人 學號 同組人學號 同組人 學號 同組人 學號 理論課任課教師 實驗課指導教師實 驗 日 期 2013年3月2日 報 告 日 期 2013年3月3日 實 驗 成 績 批 改 日 期 浙江中醫(yī)藥大學信息技術學院物理教研室篇二:大學物理實驗拉伸法測鋼絲的楊氏模量(已批閱) 系 學號姓名 日期 實驗題目:用拉伸法測鋼絲的楊氏模量 13+39+33=85 實驗目的:采用拉伸法測定楊氏模量,掌

2、握利用光杠桿測定微小形變地方法。在數(shù)據(jù)處理中,掌握逐差法 和作圖法兩種數(shù)據(jù)處理的方法 實驗儀器: 楊氏模量測量儀(包括光杠桿,砝碼,望遠鏡,標尺),米尺,螺旋測微計。 實驗原理:在胡克定律成立的范圍內,應力F/S和應變L/L之比滿足 E=(F/S)/(L/L)=FL/(SL) 其中E為一常量,稱為楊氏模量,其大小標志了材料的剛性。 根據(jù)上式,只要測量出F、L/L、S就可以得到物體的楊氏模量,又因為L很小,直接測量 困難,故采用光杠桿將其放大,從而得到L。 實驗原理圖如右圖: 當很小時,其中l(wèi)是光杠桿的臂?tan?L/l, 長。 由光的反射定律可以知道,鏡面轉過,反射光線 轉過2,而且有: ta

3、n2?2? 故: ?Ll? b(2D) bD ,即是?L?bl (2D) 那么E? 2DLFSlb ,最終也就可以用這個表達式來確 定楊氏模量E。 實驗內容: 1 調節(jié)儀器 (1) 調節(jié)放置光杠桿的平臺F與望遠鏡的相對位置,使光杠桿鏡面法線與望遠鏡軸線大體重合。 (2) 調節(jié)支架底腳螺絲,確保平臺水平,調平臺的上下位置,使管制器頂部與平臺的上表面共面。 (3) 光杠桿的調節(jié),光杠桿和鏡尺組是測量金屬絲伸長量L的關鍵部件。光杠桿的鏡面(1)和刀口(3)應平行。使用時刀口放在平臺的槽內,支腳放在管制器的槽內,刀口和支腳尖應共面。 (4) 鏡尺組的調節(jié),調節(jié)望遠鏡、直尺和光杠桿三者之間的相對位置,使

4、望遠鏡和反射鏡處于同等高度,調節(jié)望遠鏡目鏡視度圈(4),使目鏡內分劃板刻線(叉絲)清晰,用手輪(5)調焦,使標尺像清晰。 2 測量 (1) 砝碼托的質量為m0,記錄望遠鏡中標尺的讀數(shù)r0作為鋼絲的起始長度。 (2) 在砝碼托上逐次加500g砝碼(可加到3500g),觀察每增加500g時望遠鏡中標尺上的讀數(shù)ri,然 后再將砝碼逐次減去,記下對應的讀數(shù)ri,取兩組對應數(shù)據(jù)的平均值ri。 (3) 用米尺測量金屬絲的長度L和平面鏡與標尺之間的距離D,以及光杠桿的臂長l。 3 數(shù)據(jù)處理 (1) 逐差法 用螺旋測微計測金屬絲直徑d,上、中、下各測2次,共6次,然后取平均值。將ri每隔四項相減,得到相當于每

5、次加2000g的四次測量數(shù)據(jù),如設b0?r4?r0,b1?r5?r1,b2?r6?r2和b3?r7?r3并系 學號姓名 日期 求出平均值和誤差。 將測得的各量代入式(5)計算E,并求出其誤差(E/E和E),正確表述E的測量結果。 (2) 作圖法 把式(5)改寫為 ri?2DLFi/(SlE)?MFi(6) 其中M?2DL/(SlE),在一定的實驗條件下,M是一個常量,若以ri為縱坐標,F(xiàn)i為橫坐標作圖應得一直線,其斜率為M。由圖上得到M的數(shù)據(jù)后可由式(7)計算楊氏模量 E?2DL/(SlM) (7) 4 注意事項 (1) 調整好光杠桿和鏡尺組之后,整個實驗過程都要防止光杠桿的刀口和望遠鏡及豎尺

6、的位置有任何 變動,特別在加減砝碼時要格外小心,輕放輕取。 (2) 按先粗調后細調的原則,通過望遠鏡筒上的準星看反射鏡,應能看到標尺,然后再細調望遠鏡。 調目鏡可以看清叉絲,調聚焦旋鈕可以看清標尺。 實驗數(shù)據(jù): 實驗中給定的基本數(shù)據(jù)如下: 一個砝碼的質量m=(500±5)g,m=5g,D=2mm,L=2mm,l=0.2mm 實驗中測量得到的數(shù)據(jù)如下: 鋼絲直徑d(六次測量結果): 上部:0.286mm,0.285mm 中部:0.284mm,0.285mm 下部:0.286mm,0.282mm 鋼絲原長L=94.10cm,光杠桿的臂長l=7.20cm,標尺到平面鏡的距離D=126.20

7、cm 數(shù)據(jù)處理: 表一:增減砝碼過程中刻度指示的變化系 學號姓名 日期 金屬絲直徑的平均值d? 金屬絲直徑的標準差 ?d? 0.286?0.285?0.284?0.285?0.286?0.282 6 mm?0.285mm (0.286?0.285)?(0.285?0.285)?(0.284?0.285)?(0.285?0.285)?(0.286?0.285)?(0.282?0.285) 6?1 mm?0.0015mm 那么它的展伸不確定度為 B如何求得? Ud0.990? (t0.990 ?dn )?(kP 2 ?BC )? 2 (4.03? 0.0015 6 )?(2.58? 2 0.005

8、3 )mm?0.005mm,P?0.990 2 先考慮逐差法處理刻度: b0=r4r0=4.99cm,b1=r5r1=5.00cm,b2=r6r2=5.07cm,b3=r7r3=4.98cm 其平均值b?其標準差 ?b? (4.99?5.01)?(5.00?5.01)?(5.07?5.01)?(4.98?5.01) 4?1 2 2 2 2 4.99?5.00?5.07?4.98 4 cm?5.01cm cm?0.041cm 那么b的展伸不確定度為: B如何求得? 不等于0.05 Ub0.990? (t0.990 ?bn )?(kP 2 ?BC ) 2 ?(5.84? 8DLF 0.0414 )

9、?(2.58? 2 0.053 )cm?0.175cm,P?0.997 2 根據(jù)楊氏模量的表達式E? 8DLF 2DLFSlb ? ?lbd 2 ,那么可以求得 7 2 E? ?lbd 2 ? 8?126.20cm?94.10cm?2?9.8N3.14?7.20cm?(0.0285cm)?5.01cm 2 ?2.024?10N/cm 那么有最大不確定度 ?EE=?DD +?LL+?MM +2?dd +?ll+?bb? 21262.0 + 2941.0 + + 2?0.285 +0.272.0 +0.1755.01 ?0.087 所以E=0.175×107N/cm2 最終結果為: E?

10、E?E?(2.024?0.175)?10N/cm,P?0.990 7 2 不確定度保留12位有效數(shù)字 再用圖象法處理:系 學號姓名 日期 F/N 圖一:rF圖 利用ORIGIN讀出斜率為M=0.25013,那么根據(jù)公式計算得 E?2DL/(SlM)? 2?1262.0?941.0 14 ?3.14?(0.285)?7.2?0.25013 2 N/cm 2 72 ?2.067?10N/cm 逐差法與圖像法相對誤差: |E逐差法?E圖像法| E逐差法 ? 2.067?2.024 2.024 ?2.12% 實驗小結:實驗過程中最困難的是光學儀器的調整以及在望遠鏡中找到標尺的像,但是在老師的幫助下,

11、我很快在望遠鏡中找到了標尺的像,然后比較順利地完成了實驗。實驗中還遇到的一個困難是, 在望遠鏡中標尺的像可能由于采光不足,刻度略顯模糊,但我還是艱難地讀取了數(shù)據(jù)。從測量所得結果和誤差分析結果來看,實驗是比較成功的,兩種方法得出結果較為接近,在一定誤差范圍內測得了鋼絲的楊氏模量。其中用逐差法和作圖法所得到的結果基本一致,可以認為結果是可靠的。 思考題: 1.利用光杠桿把測微小長度L變成測b,光杠桿的放大率為2D/l,根據(jù)此式能否以增加D減小l來提高放大率,這樣做有無好處?有無限度?應怎樣考慮這個問題? 答:理論上講,增加D減小l是可以提高放大率的,但是在實際的操作過程中,在大多數(shù)情況下,一定的

12、放大率已經能夠保證人的觀測和實驗精確度,況且若增大D,那么在調整儀器過程中找到標尺的像會更加困難,若減小l,那么對l的測量的誤差會變得更大,同時,放大率如果過大,刻度變化太大,會 造成到砝碼加到一定數(shù)量后就已經超過標尺量程,實驗無法完成。綜合來看,應該使放大率保持在一個合適的數(shù)值,過小會造成放大效果不佳,過小會造成實際操作的困難。 標尺量程問題 角度需滿足一定的條件趙偉 5.30 篇三:光杠桿法測定楊氏模量實驗報告 楊氏彈性模量測定實驗報告 一、摘要 彈性模量是描述材料形變與應力關系的重要特征量,是工程技術中常用的一個參數(shù)。在實驗室施加的外力使材料產生的變形相當微小,難以用肉眼觀察,同時過大的

13、載荷又會使得材料發(fā)生塑形變形,所以要通過將微小變形放大的方法來測量。本實驗通過光杠桿將外力產生的微小位移放大,從而測量出楊氏彈性模量,具有較高的可操作性。 二、實驗儀器 彈性模量測定儀(包括:細鋼絲、光杠桿、望遠鏡、標尺和拉力測量裝置);鋼卷尺、螺旋測微器、游標卡尺。 三、實驗原理 (1)楊氏彈性模量定義式 任何固體在外力作用下都要發(fā)生形變,最簡單的形變就是物體受外力拉伸(或壓縮)時發(fā)生的伸長(或縮短)形變。設金屬絲的長度為L,截面積為S,一端固定,一端在伸長方向上受力為F,伸長為L。 定義: ?物體的相對伸長 ?L 為應變, L F 為應力。 S 物體單位面積上的作用力? 根據(jù)胡克定律,在物

14、體的彈性限度內,物體的應力與應變成正比,即 F?L?E SL 則有: E? FL S?L 式中的比例系數(shù)E稱為楊氏彈性模量(簡稱彈性模量)。 實驗證明:彈性模量E與外力F、物體長度L以及截面積的大小均無關,而只取決定于物體的材料本身的性質。它是表征固體性質的一個物理量。 對于直徑為D的圓柱形鋼絲,其彈性模量為: E? 4FL D2?L 根據(jù)上式,測出等號右邊各量,楊氏模量便可求得。式中的F、D、L三個量都可用一般方法測得。唯有?L是一個微小的變化量,用一般量具難以測準。故而本實驗采用光杠桿法進行間接測量。 (2)光杠桿放大原理 光杠桿測量系統(tǒng)由光杠桿反射鏡、傾角調節(jié)架、標尺、望遠鏡和調節(jié)反射鏡

15、組成。實驗時,將光杠桿兩個前足尖放在彈性模量測定儀的固定平臺上,后足尖放在待測金屬絲的測量端面上。當金屬絲受力后,產生微小伸長,后足尖便隨著測量端面一起作微小移動,并使得光杠桿繞前足尖轉動一個微小角度,從而帶動光杠桿反射鏡轉動相應的微小角度,這樣標尺的像在光杠桿反射鏡和調節(jié)反射鏡之間反射,便把這一微小角位移放大成較大的線位移。 如右圖所示,當鋼絲的長度發(fā)生變化時,光杠桿鏡面的豎直度必然要發(fā)生改變。那么改變后的鏡面和改變前的鏡面必然有一個角度差,用來表示這個角度差。從下圖我們可以看出: ?L?b?tan?b? ,式中b為光杠桿前后足距離,稱為光杠桿常數(shù)。 設開始時在望遠鏡中讀到的標尺讀數(shù)為r0,

16、偏轉后讀到的標尺讀數(shù)為 ri,則放大后的鋼絲伸長量為C?rr0,由圖中幾何關系有: 2?tan2? C/2H ,? C 4H 由上式得到:?L? bC 4H 代入計算式,即可得下式: E? 這就是本實驗所依據(jù)的公式。 16FLH ?D2bC 四、實驗步驟 (1)調整測量系統(tǒng) 1、目測調整 首先調整望遠鏡,使其與光杠桿等高,然后左右平移望遠鏡與調節(jié)平面鏡,直到憑目測從望遠鏡上方觀察到光杠桿反射鏡中出現(xiàn)調節(jié)平面鏡的像,再適當轉動調節(jié)平面鏡直到出現(xiàn)標尺的像。 2、調焦找尺 首先調節(jié)望遠鏡目鏡旋輪,使“十”字叉絲清晰成像;然后調節(jié)望遠鏡物鏡焦距,直到標尺像和“十”字叉絲無視差。 3、細調光路水平 觀察

17、望遠鏡水平叉絲所對應的標尺讀數(shù)和光杠桿在標尺上的實際位置是否一致,若明顯不同,則說明入射光線與反射光線未沿水平面?zhèn)鞑?,可以適當調節(jié)平面鏡的俯仰,直到望遠鏡讀出的數(shù)恰好為其實際位置為止。調節(jié)過程中還應該兼顧標尺像上下清晰度一致,若清晰度不同,則可以適當調節(jié)望遠鏡俯仰螺釘。 (2)測量數(shù)據(jù) 1、首先預加10kg的拉力,將鋼絲拉直,然后逐次改變鋼絲拉力(逐次增加2kg),測量望遠鏡水平叉絲對應的讀數(shù)。 由于物體受力后和撤銷外力后不是馬上能恢復原狀,而會產生彈性滯后效應,所以為了減小該效應帶來的誤差,應該在增加拉力和減小拉力過程中各測一次對應拉力下標尺讀書,然后取兩次結果的平均值。 2、根據(jù)量程及相對

18、不確定度大小,用鋼卷尺測量L和H,千分尺測量D,游標卡尺測量b??紤]到鋼絲直徑因為鋼絲截面不均勻而產生誤差,應該在鋼絲的不同位置測量多組D在取平均值。 (3)數(shù)據(jù)處理 由于在測量C時采取了等間距測量,適合用逐差法處理,故采用逐差法對視伸長C求平均值,并估算不確定度。其中L、H、b只測量一次,由于實驗條件的限制,其不確定度不能簡單地由量具儀器規(guī)定的誤差限決定,而應該根據(jù)實際情況估算儀器誤差限。i、測量鋼絲長度L時,由于鋼絲上下端裝有緊固夾頭,米尺很難測準,故誤差限應該取0.3 cm; ii、測量鏡尺間距H時,難以保證米尺水平,不彎曲和兩端對準,若該距離為1.01.5m,則誤差限應該取0.5cm;

19、 iii、用卡尺測量光杠桿前后足距b時,不能完全保證是垂直距離,該誤差限可定為0.02cm。 五、數(shù)據(jù)記錄與處理 (1)計算鋼絲彈性模量 鋼絲長度L=39.60cm,平面鏡到標尺的距離H=102.20cm,光杠桿前后足間距b=8.50cm 鋼絲直徑D測量結果(千分尺零點x0?0.320mm)5 D?Di? i?1 0.799?0.800?0.800?0.801?0.800 mm?0.800mm 5C? ?C i?1 5 i 5 ? 1.895?1.940?1.940?1.830?1.745 cm?1.870cm 5 故:E? 16mgLH ?DbC 2 ? 16?10?9.8012?0.396

20、?1. Pa?1.987?10Pa 322 3.14?(0.800?10)?0.0850?1.870?10 (2)計算鋼絲彈性模量的不確定度 L、H、b只測量一次,只有B類不確定度,估計其誤差限為L=0.3cm,H=0.5cm,b=0.02cm,故: u(L)?u(?bL) ?L0.3 ?cm?0.173cm 3?H0.5?cm?0.289cm 3u(H)?u(?bH) u(b)?u(?bb) D的不確定度: ?b0.02?cm?0.0115cm 33 u(?aD) u(?bD) 2 2 (DD)? 2 i i?1 5 5?(5?1) ?0.00032cm ?D0.005?mm?0.00289

21、cm 3 2 u(D)?ua(D)?ub(D)?0.00322?0.mm?0.00291mm C的不確定度: u(?aC) u(?bC) 2 2 (C? i?1 5 i 2 C) 5?(5?1) ?0.0372cm ?C0.05 ?cm?0.0289cm 33 u(C)?ua(C)?ub(C)?0.03722?0.02892cm?0.0471cm ?E? 16mgLH ?b2 ?lnE?lnL?lnH?2lnD?lnb?lnC?ln16?lnm?lng?ln? 兩邊同時求微分,得到: dEdLdH2dDdbdC? ELHDbC 將上式中d改為u,并取平方和的根: u(E)u(L)2u(H)22u(D)2u(b)2u(C)2 ?ELHDbC0.17320.0.04712 )?()?()?4?()?() 39.6102.20.8008.501.870?2.7%?(故:u(E)?E? u(E) ?1.987?1011?0.027Pa?0.05?1011Pa E 最終結果為:E?u(E)?(1.99?

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論