222二次函數(shù)與一元二次方程 2_第1頁
222二次函數(shù)與一元二次方程 2_第2頁
222二次函數(shù)與一元二次方程 2_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、年級九學(xué)科數(shù)學(xué)組長簽字第 周 第 課時使用人備課教師課題22.2二次函數(shù)與一元二次方程課型新授課共1課時第1課時教學(xué)目標(biāo)知識與技能1、理解二次函數(shù)的概念1、二次函數(shù)y=ax²+bx+c的圖象和x軸交點個數(shù)與一元二次方程ax²+bx+c=0根的個數(shù)有什么關(guān)系?2、二次函數(shù)y=ax²+bx+c的圖象與一元二次方程ax²+bx+c=0的根的判別式有什么關(guān)系?3、理解一元二次方程的根就是二次函數(shù)與y=ax²+bx+c圖象交點的橫坐標(biāo)。過程與方法1、經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神。2、通過觀察二次函數(shù)與x 軸交點

2、的個數(shù),討論一元二次方程的根的情況,進一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想。情感、態(tài)度、價值觀培養(yǎng)學(xué)生對數(shù)學(xué)知識的探索精神教學(xué)重點與難點1.體會方程與函數(shù)之間的聯(lián)系。2.理解何時方程有兩個不等的實根、兩個相等的實根和沒有實根。 3.理解一元二次方程的根就是二次函數(shù)與y =ax²+bx+c 交點的橫坐標(biāo)。教學(xué)方法及學(xué)法指導(dǎo)講授法教學(xué)工具多媒體教 學(xué) 過 程復(fù)備復(fù)習(xí)導(dǎo)入 回顧一元一次方程kx+b=0 (k0)和一次函數(shù)y =kx+b (k0)的關(guān)系?現(xiàn)在我們學(xué)習(xí)了一元二次方程和二次函數(shù),它們之間是否也存在一定的關(guān)系呢?本節(jié)課我們將探索有關(guān)問題?;ブ骄浚ㄒ唬﹩栴}1、以 40 m /s的速度將小球沿

3、與地面成 30度角的方向擊出時,球的飛行路線是一條拋物線,如果不考慮空氣阻力,球的飛行高度 h (單位:m)與飛行時間 t (單位:s)之間具有關(guān)系:h= 20 t 5 t2 考慮下列問題:(1)球的飛行高度能否達(dá)到 15 m ? 若能,需要多少時間?(2)球的飛行高度能否達(dá)到 20 m ? 若能,需要多少時間?(3)球的飛行高度能否達(dá)到 20.5 m ? 若能,需要多少時間?(4)球從 飛出到落地 要用多少時間 ?互助探究(二)求二次函數(shù)圖象y=x²-3x+2與x軸的交點A、B的坐標(biāo)。解: A、B在軸上, 它們的縱坐標(biāo)為0, 令y=0,則x²-3x+2=0 解得:x=1,

4、x=2; A(1,0) , B(2,0)你發(fā)現(xiàn)方程的解x、x與A、B的坐標(biāo)有什么聯(lián)系?結(jié)論2:方程x²-3x+2=0的解就是拋物線y=x²-3x+2與x軸的兩個交點的橫坐標(biāo)。因此,拋物線與一元二次方程是有密切聯(lián)系的。即:若一元二次方程ax²+bx+c=0的兩個根是x、x, 則拋物線y=ax²+bx+c與軸的兩個交點坐標(biāo)分別是A( ), B( )互助探究(三) 拓展提高練習(xí).已知拋物線yx2 m xm.(1)若拋物線經(jīng)過坐標(biāo)系原點,則m_;(2)若拋物線與y軸交于正半軸,則m_;(3)若拋物線的對稱軸為y軸,則m_。(4)若拋物線與x軸只有一個交點,則m_

5、.、不論x為何值時,函數(shù)y=ax2+bx+c(a0)的值永遠(yuǎn)為正的條件是_ _.求拋物線 與y軸的交點坐標(biāo); 與x軸的兩個交點間的距離.何時y0?檢測提升請同學(xué)們認(rèn)真自學(xué)課本第46頁內(nèi)容,請同學(xué)們掌握一元二次方程的圖象解法1.根據(jù)下列表格的對應(yīng)值:     x3.233.243.253.26y=ax²+bx+c-0.06-0.020.030.09 (2)判斷方程ax²+bx+c=0 (a0,a,b,c為常數(shù))一個解x的范圍是( )A 3< X < 3.23 B 3.23 < X < 3.24C 3.24 <X< 3.25 D 3.25 <X< 3.26 (3)不與x軸相交的拋物線是( ) A y=2x² 3 B y= - 2 x² + 3 C y= - x² 2x D y=-2(x+1)² - 3(4)如果關(guān)于x的一元二次方程 x2-2x+m=0有兩個相等的實數(shù)根,則m=,此時拋物線 y=x2-2x+m與x軸有個交點.(5)已知拋物線 y=x2 8x +c的頂點在 x軸上,則c=.(6)拋物線y=x2-3x+2 與y軸交于點,與x軸交于點_.綜合評價

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論