




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知斜率為2的直線l過拋物線C:的焦點F,且與拋物線交于A,B兩點,若線段AB的中點M的縱坐標(biāo)為1,則p( )A1BC2D42設(shè)集合、是全集的兩個子集,則“”是“”的( )A充分不必
2、要條件B必要不充分條件C充要條件D既不充分也不必要條件3已知正項數(shù)列滿足:,設(shè),當(dāng)最小時,的值為( )ABCD4已知橢圓的右焦點為F,左頂點為A,點P橢圓上,且,若,則橢圓的離心率為( )ABCD5i是虛數(shù)單位,若,則乘積的值是( )A15B3C3D156執(zhí)行如下的程序框圖,則輸出的是( )ABCD7已知雙曲線:(,)的焦距為.點為雙曲線的右頂點,若點到雙曲線的漸近線的距離為,則雙曲線的離心率是( )ABC2D38已知橢圓的焦點分別為,其中焦點與拋物線的焦點重合,且橢圓與拋物線的兩個交點連線正好過點,則橢圓的離心率為( )ABCD9已知平面向量,滿足,且,則與的夾角為( )ABCD10設(shè)等差數(shù)
3、列的前項和為,若,則( )A21B22C11D1211已知函數(shù)若對區(qū)間內(nèi)的任意實數(shù),都有,則實數(shù)的取值范圍是( )ABCD12設(shè)集合A=4,5,7,9,B=3,4,7,8,9,全集U=AB,則集合中的元素共有 ( )A3個B4個C5個D6個二、填空題:本題共4小題,每小題5分,共20分。13在中,內(nèi)角的對邊分別為,已知,則的面積為_14如圖是由3個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,設(shè), ,則的面積為_.15已知一組數(shù)據(jù),1,0,的方差為10,則_16在中,內(nèi)角所對的邊分別是,若,則_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)在本題中
4、,我們把具體如下性質(zhì)的函數(shù)叫做區(qū)間上的閉函數(shù):的定義域和值域都是;在上是增函數(shù)或者減函數(shù).(1)若在區(qū)間上是閉函數(shù),求常數(shù)的值;(2)找出所有形如的函數(shù)(都是常數(shù)),使其在區(qū)間上是閉函數(shù).18(12分)某公司打算引進一臺設(shè)備使用一年,現(xiàn)有甲、乙兩種設(shè)備可供選擇.甲設(shè)備每臺10000元,乙設(shè)備每臺9000元.此外設(shè)備使用期間還需維修,對于每臺設(shè)備,一年間三次及三次以內(nèi)免費維修,三次以外的維修費用均為每次1000元.該公司統(tǒng)計了曾使用過的甲、乙各50臺設(shè)備在一年間的維修次數(shù),得到下面的頻數(shù)分布表,以這兩種設(shè)備分別在50臺中的維修次數(shù)頻率代替維修次數(shù)發(fā)生的概率.維修次數(shù)23456甲設(shè)備5103050
5、乙設(shè)備05151515(1)設(shè)甲、乙兩種設(shè)備每臺購買和一年間維修的花費總額分別為和,求和的分布列;(2)若以數(shù)學(xué)期望為決策依據(jù),希望設(shè)備購買和一年間維修的花費總額盡量低,且維修次數(shù)盡量少,則需要購買哪種設(shè)備?請說明理由.19(12分)如圖,已知拋物線:與圓: ()相交于, , ,四個點,(1)求的取值范圍;(2)設(shè)四邊形的面積為,當(dāng)最大時,求直線與直線的交點的坐標(biāo).20(12分)在銳角中,分別是角,所對的邊,的面積,且滿足,則的取值范圍是( )ABCD21(12分)已知橢圓與x軸負(fù)半軸交于,離心率.(1)求橢圓C的方程;(2)設(shè)直線與橢圓C交于兩點,連接AM,AN并延長交直線x=4于兩點,若,
6、直線MN是否恒過定點,如果是,請求出定點坐標(biāo),如果不是,請說明理由.22(10分)如圖所示,在四棱錐中,平面,底面ABCD滿足ADBC,E為AD的中點,AC與BE的交點為O.(1)設(shè)H是線段BE上的動點,證明:三棱錐的體積是定值;(2)求四棱錐的體積;(3)求直線BC與平面PBD所成角的余弦值參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】設(shè)直線l的方程為xy,與拋物線聯(lián)立利用韋達定理可得p【詳解】由已知得F(,0),設(shè)直線l的方程為xy,并與y22px聯(lián)立得y2pyp20,設(shè)A(x1,y1),B(x2,y2),AB的中
7、點C(x0,y0),y1+y2p,又線段AB的中點M的縱坐標(biāo)為1,則y0(y1+y2),所以p=2,故選C【點睛】本題主要考查了直線與拋物線的相交弦問題,利用韋達定理是解題的關(guān)鍵,屬中檔題2C【解析】作出韋恩圖,數(shù)形結(jié)合,即可得出結(jié)論.【詳解】如圖所示,同時.故選:C.【點睛】本題考查集合關(guān)系及充要條件,注意數(shù)形結(jié)合方法的應(yīng)用,屬于基礎(chǔ)題.3B【解析】由得,即,所以得,利用基本不等式求出最小值,得到,再由遞推公式求出.【詳解】由得,即,當(dāng)且僅當(dāng)時取得最小值,此時.故選:B【點睛】本題主要考查了數(shù)列中的最值問題,遞推公式的應(yīng)用,基本不等式求最值,考查了學(xué)生的運算求解能力.4C【解析】不妨設(shè)在第一
8、象限,故,根據(jù)得到,解得答案.【詳解】不妨設(shè)在第一象限,故,即,即,解得,(舍去).故選:.【點睛】本題考查了橢圓的離心率,意在考查學(xué)生的計算能力.5B【解析】,選B6A【解析】列出每一步算法循環(huán),可得出輸出結(jié)果的值.【詳解】滿足,執(zhí)行第一次循環(huán),;成立,執(zhí)行第二次循環(huán),;成立,執(zhí)行第三次循環(huán),;成立,執(zhí)行第四次循環(huán),;成立,執(zhí)行第五次循環(huán),;成立,執(zhí)行第六次循環(huán),;成立,執(zhí)行第七次循環(huán),;成立,執(zhí)行第八次循環(huán),;不成立,跳出循環(huán)體,輸出的值為,故選:A.【點睛】本題考查算法與程序框圖的計算,解題時要根據(jù)算法框圖計算出算法的每一步,考查分析問題和計算能力,屬于中等題.7A【解析】由點到直線距離
9、公式建立的等式,變形后可求得離心率【詳解】由題意,一條漸近線方程為,即,即,故選:A【點睛】本題考查求雙曲線的離心率,掌握漸近線方程與點到直線距離公式是解題基礎(chǔ)8B【解析】根據(jù)題意可得易知,且,解方程可得,再利用即可求解.【詳解】易知,且故有,則故選:B【點睛】本題考查了橢圓的幾何性質(zhì)、拋物線的幾何性質(zhì),考查了學(xué)生的計算能力,屬于中檔題9C【解析】根據(jù), 兩邊平方,化簡得,再利用數(shù)量積定義得到求解.【詳解】因為平面向量,滿足,且, 所以,所以,所以 ,所以,所以與的夾角為.故選:C【點睛】本題主要考查平面向量的模,向量的夾角和數(shù)量積運算,屬于基礎(chǔ)題.10A【解析】由題意知成等差數(shù)列,結(jié)合等差中
10、項,列出方程,即可求出的值.【詳解】解:由為等差數(shù)列,可知也成等差數(shù)列,所以 ,即,解得.故選:A.【點睛】本題考查了等差數(shù)列的性質(zhì),考查了等差中項.對于等差數(shù)列,一般用首項和公差將已知量表示出來,繼而求出首項和公差.但是這種基本量法計算量相對比較大,如果能結(jié)合等差數(shù)列性質(zhì),可使得計算量大大減少.11C【解析】分析:先求導(dǎo),再對a分類討論求函數(shù)的單調(diào)區(qū)間,再畫圖分析轉(zhuǎn)化對區(qū)間內(nèi)的任意實數(shù),都有,得到關(guān)于a的不等式組,再解不等式組得到實數(shù)a的取值范圍.詳解:由題得. 當(dāng)a1時,所以函數(shù)f(x)在單調(diào)遞減, 因為對區(qū)間內(nèi)的任意實數(shù),都有, 所以, 所以 故a1,與a1矛盾,故a1矛盾. 當(dāng)1ae時
11、,函數(shù)f(x)在0,lna單調(diào)遞增,在(lna,1單調(diào)遞減. 所以 因為對區(qū)間內(nèi)的任意實數(shù),都有, 所以, 所以 即 令, 所以 所以函數(shù)g(a)在(1,e)上單調(diào)遞減, 所以, 所以當(dāng)1ae時,滿足題意. 當(dāng)a時,函數(shù)f(x)在(0,1)單調(diào)遞增, 因為對區(qū)間內(nèi)的任意實數(shù),都有, 所以, 故1+1, 所以 故綜上所述,a.故選C.點睛:本題的難點在于“對區(qū)間內(nèi)的任意實數(shù),都有”的轉(zhuǎn)化.由于是函數(shù)的問題,所以我們要聯(lián)想到利用函數(shù)的性質(zhì)(單調(diào)性、奇偶性、周期性、對稱性、最值、極值等)來分析解答問題.本題就是把這個條件和函數(shù)的單調(diào)性和最值聯(lián)系起來,完成了數(shù)學(xué)問題的等價轉(zhuǎn)化,找到了問題的突破口.12
12、A【解析】試題分析:,所以,即集合中共有3個元素,故選A考點:集合的運算二、填空題:本題共4小題,每小題5分,共20分。13【解析】由余弦定理先算出c,再利用面積公式計算即可.【詳解】由余弦定理,得,即,解得,故的面積.故答案為:【點睛】本題考查利用余弦定理求解三角形的面積,考查學(xué)生的計算能力,是一道基礎(chǔ)題.14【解析】根據(jù)個全等的三角形,得到,設(shè),求得,利用余弦定理求得,再利用三角形的面積公式,求得三角形的面積.【詳解】由于三角形是由個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,所以.在三角形中,.設(shè),則.由余弦定理得,解得.所以三角形邊長為,面積為.故答案為:【點睛】本題考
13、查了等邊三角形的面積計算公式、余弦定理、全等三角形的性質(zhì),考查了推理能力與計算能力,屬于中檔題157或【解析】依據(jù)方差公式列出方程,解出即可【詳解】,1,0,的平均數(shù)為,所以 解得或【點睛】本題主要考查方差公式的應(yīng)用16【解析】先求得的值,由此求得的值,再利用正弦定理求得的值.【詳解】由于,所以,所以.由正弦定理得.故答案為:【點睛】本小題主要考查正弦定理解三角形,考查同角三角函數(shù)的基本關(guān)系式,考查兩角和的正弦公式,考查三角形的內(nèi)角和定理,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1);(2).【解析】(1)依據(jù)新定義,的定義域和值域都是,且在上單調(diào),建立
14、方程求解;(2)依據(jù)新定義,討論的單調(diào)性,列出方程求解即可。【詳解】(1)當(dāng)時,由復(fù)合函數(shù)單調(diào)性知,在區(qū)間上是增函數(shù),即有 ,解得 ;同理,當(dāng)時,有,解得,綜上,。(2)若在上是閉函數(shù),則在上是單調(diào)函數(shù),當(dāng)在上是單調(diào)增函數(shù),則 ,解得,檢驗符合; 當(dāng)在上是單調(diào)減函數(shù),則,解得,在上不是單調(diào)函數(shù),不符合題意。故滿足在區(qū)間上是閉函數(shù)只有。【點睛】本題主要考查學(xué)生的應(yīng)用意識,利用所學(xué)知識分析解決新定義問題。18(1)分布列見解析,分布列見解析;(2)甲設(shè)備,理由見解析【解析】(1)的可能取值為10000,11000,12000,的可能取值為9000,10000,11000,12000,計算概率得到分
15、布列;(2)計算期望,得到,設(shè)甲、乙兩設(shè)備一年內(nèi)的維修次數(shù)分別為,計算分布列,計算數(shù)學(xué)期望得到答案.【詳解】(1)的可能取值為10000,11000,12000,因此的分布如下100001100012000的可能取值為9000,10000,11000,12000,因此的分布列為如下9000100001100012000(2)設(shè)甲、乙兩設(shè)備一年內(nèi)的維修次數(shù)分別為,的可能取值為2,3,4,5,則的分布列為2345的可能取值為3,4,5,6,則的分布列為3456由于,因此需購買甲設(shè)備【點睛】本題考查了數(shù)學(xué)期望和分布列,意在考查學(xué)生的計算能力和應(yīng)用能力.19(1)(2)點的坐標(biāo)為【解析】將拋物線方程與
16、圓方程聯(lián)立,消去得到關(guān)于的一元二次方程, 拋物線與圓有四個交點需滿足關(guān)于的一元二次方程在上有兩個不等的實數(shù)根,根據(jù)二次函數(shù)的有關(guān)性質(zhì)即可得到關(guān)于的不等式組,解不等式即可.不妨設(shè)拋物線與圓的四個交點坐標(biāo)為,據(jù)此可表示出直線、的方程,聯(lián)立方程即可表示出點坐標(biāo),再根據(jù)等腰梯形的面積公式可得四邊形的面積的表達式,令,由及知,對關(guān)于的面積函數(shù)進行求導(dǎo),判斷其單調(diào)性和最值,即可求出四邊形的面積取得最大值時的值,進而求出點坐標(biāo).【詳解】(1)聯(lián)立拋物線與圓的方程消去,得.由題意可知在上有兩個不等的實數(shù)根.所以解得,所以的取值范圍為.(2)根據(jù)(1)可設(shè)方程的兩個根分別為,(),則,且,所以直線、的方程分別為
17、,,聯(lián)立方程可得,點的坐標(biāo)為,因為四邊形為等腰梯形,所以,令,則,所以,因為,所以當(dāng)時,;當(dāng)時,, 所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,即當(dāng)時,四邊形的面積取得最大值,因為,點的坐標(biāo)為,所以當(dāng)四邊形的面積取得最大值時,點的坐標(biāo)為.【點睛】本題考查利用導(dǎo)數(shù)求函數(shù)的極值與最值、拋物線及其標(biāo)準(zhǔn)方程及直線與圓錐曲線相關(guān)的最值問題;考查運算求解能力、轉(zhuǎn)化與化歸能力和知識的綜合運用能力;利用函數(shù)的思想求圓錐曲線中面積的最值是求解本題的關(guān)鍵;屬于綜合型強、難度大型試題.20A【解析】由正弦定理化簡得,解得,進而得到,利用正切的倍角公式求得,根據(jù)三角形的面積公式,求得,進而化簡,即可求解.【詳解】由題意,在銳
18、角中,滿足,由正弦定理可得,即,可得,所以,即,所以,所以,則,所以,可得,又由的面積,所以,則.故選:A.【點睛】本題主要考查了正弦定理、余弦定理的應(yīng)用,以及三角形的面積公式和正切的倍角公式的綜合應(yīng)用,著重考查了推理與運算能力,屬于中檔試題.21(1)(2)直線恒過定點,詳見解析【解析】(1)依題意由橢圓的簡單性質(zhì)可求出,即得橢圓C的方程;(2)設(shè)直線的方程為:,聯(lián)立直線的方程與橢圓方程可求得點的坐標(biāo),同理可求出點的坐標(biāo),根據(jù)的坐標(biāo)可求出直線的方程,將其化簡成點斜式,即可求出定點坐標(biāo)【詳解】(1)由題有,.,.橢圓方程為.(2)設(shè)直線的方程為:,則或,同理,當(dāng)時,由有.,同理,又,當(dāng)時,直線的方程為直線恒過定點,當(dāng)時,此時也過定點.綜上:直線恒過定點.【點睛】本題主要考查利用橢圓的簡單性質(zhì)求橢圓的標(biāo)準(zhǔn)方程,以及直線與橢圓的位置關(guān)系應(yīng)用,定點問題的求法等,意在考查學(xué)生的邏輯推理能力和數(shù)學(xué)運算能力,屬于難題22(1)證明見解析 (2) (3)【解析】(1)因為底面ABCD為梯形,且,所以四邊形BCDE為平行四邊形,則BECD,又平面,平面,所以平面,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 端午節(jié)期間安全生產(chǎn)檢查
- 電氣安全知識培訓(xùn)總結(jié)
- 上海市化學(xué)事故應(yīng)急救援辦法
- 2025年度工會工作總結(jié)及2025年工作計劃
- 道路旅客運輸企業(yè)安全管理規(guī)范(試行)
- 安全生產(chǎn)許可證主要負(fù)責(zé)人
- 2025屆云南省河口縣第一中學(xué)物理高一第二學(xué)期期末預(yù)測試題含解析
- 新疆昌吉市一中2025年物理高二第二學(xué)期期末學(xué)業(yè)水平測試試題含解析
- 2025年吉林省蛟河高級中學(xué)物理高一第二學(xué)期期末學(xué)業(yè)水平測試試題含解析
- 四川省巴中市2025屆物理高二第二學(xué)期期末學(xué)業(yè)水平測試試題含解析
- 05-衣之鏢-輔行訣湯液經(jīng)法用藥圖釋義
- LS/T 3240-2012湯圓用水磨白糯米粉
- GB/T 15298-1994電子設(shè)備用電位器第一部分:總規(guī)范
- 泥水平衡盾構(gòu)簡介課件
- 新教科版六下科學(xué)4-6《生命體中的化學(xué)變化》教案
- 2023高中學(xué)業(yè)水平合格性考試歷史重點知識點歸納總結(jié)(復(fù)習(xí)必背)
- 自然指數(shù)NatureIndex(NI)收錄的68種自然科學(xué)類期刊
- 手術(shù)報告審批單
- 《專業(yè)導(dǎo)論光電信息科學(xué)與工程》教學(xué)大綱
- 廣東省湛江市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名明細
- 少兒美術(shù)國畫- 少兒希望 《紫藤課件》
評論
0/150
提交評論