




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學模擬試卷注意事項:1答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2答題時請按要求用筆。3請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知等差數(shù)列的前項和為,若,則等差數(shù)列公差()A2BC3D42設(shè),則關(guān)于的方程所表示的曲線是( )A長軸在軸上的橢
2、圓B長軸在軸上的橢圓C實軸在軸上的雙曲線D實軸在軸上的雙曲線3已知為定義在上的奇函數(shù),且滿足當時,則( )ABCD4設(shè)某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是Ay與x具有正的線性相關(guān)關(guān)系B回歸直線過樣本點的中心(,)C若該大學某女生身高增加1cm,則其體重約增加0.85kgD若該大學某女生身高為170cm,則可斷定其體重比為58.79kg5棱長為2的正方體內(nèi)有一個內(nèi)切球,過正方體中兩條異面直線,的中點作直線,則該直線被球面截在球內(nèi)的線段的
3、長為( )ABCD16在我國傳統(tǒng)文化“五行”中,有“金、木、水、火、土”五個物質(zhì)類別,在五者之間,有一種“相生”的關(guān)系,具體是:金生水、水生木、木生火、火生土、土生金.從五行中任取兩個,這二者具有相生關(guān)系的概率是( )A0.2B0.5C0.4D0.87集合,則=( )ABCD8已知甲、乙兩人獨立出行,各租用共享單車一次(假定費用只可能為、元)甲、乙租車費用為元的概率分別是、,甲、乙租車費用為元的概率分別是、,則甲、乙兩人所扣租車費用相同的概率為( )ABCD9下列函數(shù)中既關(guān)于直線對稱,又在區(qū)間上為增函數(shù)的是( )A.BCD10已知函數(shù)(),若函數(shù)在上有唯一零點,則的值為( )A1B或0C1或0
4、D2或011已知,則下列說法中正確的是( )A是假命題B是真命題C是真命題D是假命題12已知a0,b0,a+b =1,若 =,則的最小值是( )A3B4C5D6二、填空題:本題共4小題,每小題5分,共20分。13在平面直角坐標系中,雙曲線的焦距為,若過右焦點且與軸垂直的直線與兩條漸近線圍成的三角形面積為,則雙曲線的離心率為_.14設(shè)常數(shù),如果的二項展開式中項的系數(shù)為-80,那么_.15若曲線(其中常數(shù))在點處的切線的斜率為1,則_.16已知數(shù)列中,為其前項和,則_,_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)如圖,直角三角形所在的平面與半圓弧所在平面相交于,
5、,,分別為,的中點, 是上異于,的點, .(1)證明:平面平面;(2)若點為半圓弧上的一個三等分點(靠近點)求二面角的余弦值.18(12分)數(shù)列的前項和為,且.數(shù)列滿足,其前項和為.(1)求數(shù)列與的通項公式;(2)設(shè),求數(shù)列的前項和.19(12分)已知函數(shù)的定義域為,且滿足,當時,有,且.(1)求不等式的解集;(2)對任意,恒成立,求實數(shù)的取值范圍.20(12分)在銳角中,分別是角,所對的邊,的面積,且滿足,則的取值范圍是( )ABCD21(12分)已知橢圓的右焦點為,過作軸的垂線交橢圓于點(點在軸上方),斜率為的直線交橢圓于兩點,過點作直線交橢圓于點,且,直線交軸于點.(1)設(shè)橢圓的離心率為
6、,當點為橢圓的右頂點時,的坐標為,求的值.(2)若橢圓的方程為,且,是否存在使得成立?如果存在,求出的值;如果不存在,請說明理由.22(10分)設(shè)函數(shù)(1)當時,求不等式的解集;(2)當時,求實數(shù)的取值范圍參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】根據(jù)等差數(shù)列的求和公式即可得出【詳解】a1=12,S5=90,512+ d=90,解得d=1故選C【點睛】本題主要考查了等差數(shù)列的求和公式,考查了推理能力與計算能力,屬于中檔題2C【解析】根據(jù)條件,方程即,結(jié)合雙曲線的標準方程的特征判斷曲線的類型【詳解】解:k1,1+k0
7、,k2-10,方程,即,表示實軸在y軸上的雙曲線,故選C【點睛】本題考查雙曲線的標準方程的特征,依據(jù)條件把已知的曲線方程化為是關(guān)鍵3C【解析】由題設(shè)條件,可得函數(shù)的周期是,再結(jié)合函數(shù)是奇函數(shù)的性質(zhì)將轉(zhuǎn)化為函數(shù)值,即可得到結(jié)論.【詳解】由題意,則函數(shù)的周期是,所以,又函數(shù)為上的奇函數(shù),且當時,所以,.故選:C.【點睛】本題考查函數(shù)的周期性,由題設(shè)得函數(shù)的周期是解答本題的關(guān)鍵,屬于基礎(chǔ)題.4D【解析】根據(jù)y與x的線性回歸方程為 y=0.85x85.71,則=0.850,y 與 x 具有正的線性相關(guān)關(guān)系,A正確;回歸直線過樣本點的中心(),B正確;該大學某女生身高增加 1cm,預測其體重約增加 0.
8、85kg,C正確;該大學某女生身高為 170cm,預測其體重約為0.8517085.71=58.79kg,D錯誤故選D5C【解析】連結(jié)并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OHMN,推導出OHRQ,且OHRQ,由此能求出該直線被球面截在球內(nèi)的線段的長【詳解】如圖,MN為該直線被球面截在球內(nèi)的線段連結(jié)并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OHMN,OHRQ,且OHRQ,MH,MN故選:C【點睛】本題主要考查該直線被球面截在球內(nèi)的線段的長的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題6B【解析】利用列
9、舉法,結(jié)合古典概型概率計算公式,計算出所求概率.【詳解】從五行中任取兩個,所有可能的方法為:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共種,其中由相生關(guān)系的有金水、木水、木火、火土、金土,共種,所以所求的概率為.故選:B【點睛】本小題主要考查古典概型的計算,屬于基礎(chǔ)題.7C【解析】先化簡集合A,B,結(jié)合并集計算方法,求解,即可【詳解】解得集合,所以,故選C【點睛】本道題考查了集合的運算,考查了一元二次不等式解法,關(guān)鍵化簡集合A,B,難度較小8B【解析】甲、乙兩人所扣租車費用相同即同為1元,或同為2元,或同為3元,由獨立事件的概率公式計算即得【詳解】由題意甲、乙租車費用為3元的
10、概率分別是,甲、乙兩人所扣租車費用相同的概率為故選:B【點睛】本題考查獨立性事件的概率掌握獨立事件的概率乘法公式是解題基礎(chǔ)9C【解析】根據(jù)函數(shù)的對稱性和單調(diào)性的特點,利用排除法,即可得出答案.【詳解】A中,當時,所以不關(guān)于直線對稱,則錯誤;B中,所以在區(qū)間上為減函數(shù),則錯誤;D中,而,則,所以不關(guān)于直線對稱,則錯誤;故選:C.【點睛】本題考查函數(shù)基本性質(zhì),根據(jù)函數(shù)的解析式判斷函數(shù)的對稱性和單調(diào)性,屬于基礎(chǔ)題.10C【解析】求出函數(shù)的導函數(shù),當時,只需,即,令,利用導數(shù)求其單調(diào)區(qū)間,即可求出參數(shù)的值,當時,根據(jù)函數(shù)的單調(diào)性及零點存在性定理可判斷;【詳解】解:(),當時,由得,則在上單調(diào)遞減,在上
11、單調(diào)遞增,所以是極小值,只需,即.令,則,函數(shù)在上單調(diào)遞增.,;當時,函數(shù)在上單調(diào)遞減,函數(shù)在上有且只有一個零點,的值是1或0.故選:C【點睛】本題考查利用導數(shù)研究函數(shù)的零點問題,零點存在性定理的應用,屬于中檔題.11D【解析】舉例判斷命題p與q的真假,再由復合命題的真假判斷得答案【詳解】當時,故命題為假命題;記f(x)exx的導數(shù)為f(x)ex,易知f(x)exx(,0)上遞減,在(0,)上遞增,f(x)f(0)0,即,故命題為真命題;是假命題故選D【點睛】本題考查復合命題的真假判斷,考查全稱命題與特稱命題的真假,考查指對函數(shù)的圖象與性質(zhì),是基礎(chǔ)題12C【解析】根據(jù)題意,將a、b代入,利用基
12、本不等式求出最小值即可.【詳解】a0,b0,a+b=1,當且僅當時取“”號答案:C【點睛】本題考查基本不等式的應用,“1”的應用,利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是首先要判斷參數(shù)是否為正;二定是其次要看和或積是否為定值(和定積最大,積定和最小);三相等是最后一定要驗證等號能否成立,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】利用即可建立關(guān)于的方程.【詳解】設(shè)雙曲線右焦點為,過右焦點且與軸垂直的直線與兩條漸近線分別交于兩點,則,由已知,即,所以,離心率.故答案為:【點睛】本題考查求雙曲線的離心率,做此類題的關(guān)鍵是建立的方程
13、或不等式,是一道容易題.14【解析】利用二項式定理的通項公式即可得出.【詳解】的二項展開式的通項公式:,令,解得.,解得.故答案為:-2.【點睛】本小題主要考查根據(jù)二項式展開式的系數(shù)求參數(shù),屬于基礎(chǔ)題.15【解析】利用導數(shù)的幾何意義,由解方程即可.【詳解】由已知,所以,解得.故答案為:.【點睛】本題考查導數(shù)的幾何意義,考查學生的基本運算能力,是一道基礎(chǔ)題.168 (寫為也得分) 【解析】由,得,.當時,所以,所以的奇數(shù)項是以1為首項,以2為公比的等比數(shù)列;其偶數(shù)項是以2為首項,以2為公比的等比數(shù)列.則,.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)詳見解析;(2).
14、【解析】(1)由直徑所對的圓周角為,可知,通過計算,利用勾股定理的逆定理可以判斷出為直角三角形,所以有.由已知可以證明出,這樣利用線面垂直的判定定理可以證明平面,利用面面垂直的判定定理可以證明出平面平面;(2)以為坐標原點,分別以垂直于平面向上的方向、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,求出相應點的坐標,求出平面的一個法向量和平面的法向量,利用空間向量數(shù)量積運算公式,可以求出二面角的余弦值.【詳解】解:(1)證明:因為半圓弧上的一點,所以.在中,分別為的中點,所以,且.于是在中, ,所以為直角三角形,且. 因為,,所以. 因為, 所以平面.又平面,所以平面平面.
15、(2)由已知,以為坐標原點,分別以垂直于、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,則,, ,. 設(shè)平面的一個法向量為,則即,取,得. 設(shè)平面的法向量,則即,取,得. 所以, 又二面角為銳角,所以二面角的余弦值為. 【點睛】本題考查了利用線面垂直判定面面垂直、利用空間向量數(shù)量積求二面角的余弦值問題.18(1),;(2).【解析】(1)令可求得的值,令,由得出,兩式相減可推導出數(shù)列為等比數(shù)列,確定該數(shù)列的公比,利用等比數(shù)列的通項公式可求得數(shù)列的通項公式,再利用對數(shù)的運算性質(zhì)可得出數(shù)列的通項公式;(2)運用等差數(shù)列的求和公式,運用數(shù)列的分組求和和裂項相消求和,化簡可得.【詳
16、解】(1)當時,所以;當時,得,即,所以,數(shù)列是首項為,公比為 的等比數(shù)列,.;(2)由(1)知數(shù)列是首項為,公差為的等差數(shù)列,.,.所以.【點睛】本題考查數(shù)列的遞推式的運用,注意結(jié)合等比數(shù)列的定義和通項公式,考查數(shù)列的求和方法:分組求和法和裂項相消求和,考查運算能力,屬于中檔題19(1);(2).【解析】(1)利用定義法求出函數(shù)在上單調(diào)遞增,由和,求出,求出,運用單調(diào)性求出不等式的解集;(2)由于恒成立,由(1)得出在上單調(diào)遞增,恒成立,設(shè),利用三角恒等變換化簡,結(jié)合恒成立的條件,構(gòu)造新函數(shù),利用單調(diào)性和最值,求出實數(shù)的取值范圍.【詳解】(1)設(shè),所以函數(shù)在上單調(diào)遞增,又因為和,則,所以得解
17、得,即, 故的取值范圍為;(2) 由于恒成立,恒成立,設(shè), 則, 令, 則,所以在區(qū)間上單調(diào)遞增, 所以,根據(jù)條件,只要 ,所以.【點睛】本題考查利用定義法求函數(shù)的單調(diào)性和利用單調(diào)性求不等式的解集,考查不等式恒成立問題,還運用降冪公式、兩角和與差的余弦公式、輔助角公式,考查轉(zhuǎn)化思想和解題能力.20A【解析】由正弦定理化簡得,解得,進而得到,利用正切的倍角公式求得,根據(jù)三角形的面積公式,求得,進而化簡,即可求解.【詳解】由題意,在銳角中,滿足,由正弦定理可得,即,可得,所以,即,所以,所以,則,所以,可得,又由的面積,所以,則.故選:A.【點睛】本題主要考查了正弦定理、余弦定理的應用,以及三角形
18、的面積公式和正切的倍角公式的綜合應用,著重考查了推理與運算能力,屬于中檔試題.21(1);(2)不存在,理由見解析【解析】(1)寫出,根據(jù),斜率乘積為-1,建立等量關(guān)系求解離心率;(2)寫出直線AB的方程,根據(jù)韋達定理求出點B的坐標,計算出弦長,根據(jù)垂直關(guān)系同理可得,利用等式即可得解.【詳解】(1)由題可得,過點作直線交橢圓于點,且,直線交軸于點.點為橢圓的右頂點時,的坐標為,即,化簡得:,即,解得或(舍去),所以;(2)橢圓的方程為,由(1)可得,聯(lián)立得:,設(shè)B的橫坐標,根據(jù)韋達定理,即,所以,同理可得若存在使得成立,則,化簡得:,此方程無解,所以不存在使得成立.【點睛】此題考查求橢圓離心率,根據(jù)直線與橢圓的位置關(guān)系解決弦長問題,關(guān)鍵在于熟練掌握解析幾何常用方法,尤其是韋達定理在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 健美操與健身市場的跨界融合趨勢
- 高效能抽水蓄能技術(shù)的突破方向
- 2025歐元借款合同范文
- 跨學科協(xié)同模式在醫(yī)學教育中的應用
- 小麥抗白粉病性狀的遺傳基礎(chǔ)研究
- 幼兒多元智能激活
- 答辯秘籍模板
- 公司綠色行動深度解析
- 塑造健康生活模式
- 手工藝術(shù)探秘
- 浙能鎮(zhèn)海聯(lián)合發(fā)電公司燃機異地遷建改造項目環(huán)評報告
- 辦公大樓保安試題及答案
- 新一代大型機場行李處理系統(tǒng)關(guān)鍵技術(shù)與應用
- 鐵路電務設(shè)備培訓課件
- 全國100所名校2025屆高考沖刺模擬英語試題含答案
- 2024年云南曲靖公開招聘社區(qū)工作者考試試題答案解析
- 工業(yè)設(shè)計接單合同協(xié)議
- 國家開放大學《創(chuàng)業(yè)基礎(chǔ)》第三次形考任務答案
- 湖南省長沙市雅禮集團2024-2025學年高二下學期3月月考物理試卷(原卷版+解析版)
- 營房維修考試題及答案
- 研發(fā)實驗室試題及答案
評論
0/150
提交評論