高考數(shù)學(xué)壓軸難題歸納總結(jié)培優(yōu)專題2.12 交點(diǎn)零點(diǎn)有沒(méi)有極最符號(hào)異與否 (含解析)_第1頁(yè)
高考數(shù)學(xué)壓軸難題歸納總結(jié)培優(yōu)專題2.12 交點(diǎn)零點(diǎn)有沒(méi)有極最符號(hào)異與否 (含解析)_第2頁(yè)
高考數(shù)學(xué)壓軸難題歸納總結(jié)培優(yōu)專題2.12 交點(diǎn)零點(diǎn)有沒(méi)有極最符號(hào)異與否 (含解析)_第3頁(yè)
高考數(shù)學(xué)壓軸難題歸納總結(jié)培優(yōu)專題2.12 交點(diǎn)零點(diǎn)有沒(méi)有極最符號(hào)異與否 (含解析)_第4頁(yè)
高考數(shù)學(xué)壓軸難題歸納總結(jié)培優(yōu)專題2.12 交點(diǎn)零點(diǎn)有沒(méi)有極最符號(hào)異與否 (含解析)_第5頁(yè)
已閱讀5頁(yè),還剩26頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

高考資源網(wǎng)(),您身邊的高考專家全品高考網(wǎng)歡迎廣大教師踴躍來(lái)稿,稿酬豐厚。高考資源網(wǎng)(),您身邊的高考專家歡迎廣大教師踴躍來(lái)稿,稿酬豐厚。高考數(shù)學(xué)壓軸難題歸納總結(jié)提高培優(yōu)專題2.12交點(diǎn)零點(diǎn)有沒(méi)有極最符號(hào)異與否【題型綜述】導(dǎo)數(shù)研究函數(shù)圖象交點(diǎn)及零點(diǎn)問(wèn)題

利用導(dǎo)數(shù)來(lái)探討函數(shù)SKIPIF1<0的圖象與函數(shù)SKIPIF1<0的圖象的交點(diǎn)問(wèn)題,有以下幾個(gè)步驟:①構(gòu)造函數(shù)SKIPIF1<0;②求導(dǎo)SKIPIF1<0;③研究函數(shù)SKIPIF1<0的單調(diào)性和極值(必要時(shí)要研究函數(shù)圖象端點(diǎn)的極限情況);④畫出函數(shù)SKIPIF1<0的草圖,觀察與SKIPIF1<0軸的交點(diǎn)情況,列不等式;⑤解不等式得解.探討函數(shù)SKIPIF1<0的零點(diǎn)個(gè)數(shù),往往從函數(shù)的單調(diào)性和極值入手解決問(wèn)題,結(jié)合零點(diǎn)存在性定理求解.【典例指引】例1.已知函數(shù)SKIPIF1<0,SKIPIF1<0.(I)若曲線SKIPIF1<0在點(diǎn)(1,SKIPIF1<0)處的切線與直線SKIPIF1<0垂直,求a的值;(II)當(dāng)SKIPIF1<0時(shí),試問(wèn)曲線SKIPIF1<0與直線SKIPIF1<0是否有公共點(diǎn)?如果有,求出所有公共點(diǎn);若沒(méi)有,請(qǐng)說(shuō)明理由.【思路引導(dǎo)】(1)根據(jù)導(dǎo)數(shù)的幾何意義得到SKIPIF1<0,即SKIPIF1<0;(2)構(gòu)造函數(shù)SKIPIF1<0,研究這個(gè)函數(shù)的單調(diào)性,它和軸的交點(diǎn)個(gè)數(shù)即可得到SKIPIF1<0在(0,1)SKIPIF1<0(SKIPIF1<0)恒負(fù),SKIPIF1<0,故只有一個(gè)公共點(diǎn).當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在(SKIPIF1<0)單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在(0,1)單調(diào)遞增.又SKIPIF1<0,所以SKIPIF1<0在(0,1)SKIPIF1<0(SKIPIF1<0)恒負(fù)因此,曲線SKIPIF1<0與直線SKIPIF1<0僅有一個(gè)公共點(diǎn),公共點(diǎn)為(1,-1).例2.已知函數(shù)f(x)=lnx,h(x)=ax(a為實(shí)數(shù))(1)函數(shù)f(x)的圖象與h(x)的圖象沒(méi)有公共點(diǎn),求實(shí)數(shù)a的取值范圍;(2)是否存在實(shí)數(shù)m,使得對(duì)任意的SKIPIF1<0都有函數(shù)SKIPIF1<0的圖象在函數(shù)SKIPIF1<0圖象的下方?若存在,請(qǐng)求出整數(shù)m的最大值;若不存在,說(shuō)明理由(SKIPIF1<0)【思路引導(dǎo)】(Ⅰ)函數(shù)SKIPIF1<0與SKIPIF1<0無(wú)公共點(diǎn)轉(zhuǎn)化為方程SKIPIF1<0在SKIPIF1<0無(wú)解,令SKIPIF1<0,得出SKIPIF1<0是唯一的極大值點(diǎn),進(jìn)而得到SKIPIF1<0,即可求解實(shí)數(shù)SKIPIF1<0取值范圍;(Ⅱ)由不等式SKIPIF1<0對(duì)SKIPIF1<0恒成立,即SKIPIF1<0對(duì)SKIPIF1<0恒成立,令SKIPIF1<0,則SKIPIF1<0,再令SKIPIF1<0,轉(zhuǎn)化為利用導(dǎo)數(shù)得到函數(shù)的單調(diào)性和極值,即可得出結(jié)論.當(dāng)且僅當(dāng)SKIPIF1<0故實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0∴存在SKIPIF1<0,使得SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,………9分∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增,則SKIPIF1<0取到最小值SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞增SKIPIF1<0,∴存在實(shí)數(shù)SKIPIF1<0滿足題意,且最大整數(shù)SKIPIF1<0的值為SKIPIF1<0.例3.已知二次函數(shù)f(x)的最小值為-4,且關(guān)于x的不等式f(x)≤0的解集為{x|-1≤x≤3,x∈R}.(1)求函數(shù)f(x)的解析式;(2)求函數(shù)SKIPIF1<0的零點(diǎn)個(gè)數(shù).【思路引導(dǎo)】(1)根據(jù)SKIPIF1<0是二次函數(shù),且關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集為SKIPIF1<0,設(shè)出函數(shù)解析式,利用函數(shù)SKIPIF1<0的最小值為SKIPIF1<0,可求函數(shù)SKIPIF1<0的解析式;(2)求導(dǎo)數(shù),確定函數(shù)的單調(diào)性,可得當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,結(jié)合單調(diào)性由此可得結(jié)論.(2)∵SKIPIF1<0,∴SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0變化時(shí),SKIPIF1<0,SKIPIF1<0的取值變化情況如下:SKIPIF1<0SKIPIF1<01SKIPIF1<03SKIPIF1<0SKIPIF1<0+0-0+SKIPIF1<0遞增極大值遞減極小值遞增當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,又因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞增,因而SKIPIF1<0在SKIPIF1<0上只有1個(gè)零點(diǎn),故SKIPIF1<0在SKIPIF1<0上僅有1個(gè)零點(diǎn).點(diǎn)睛:本題主要考查二次函數(shù)與一元二次不等式的關(guān)系,即一元二次不等式的解集區(qū)間的端點(diǎn)值即為對(duì)應(yīng)二次函數(shù)的零點(diǎn),同時(shí)用導(dǎo)數(shù)研究函數(shù)圖象的意識(shí)、考查數(shù)形結(jié)合思想,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,根據(jù)零點(diǎn)存在性定理與單調(diào)性相結(jié)合可得零點(diǎn)個(gè)數(shù).例4.已知函數(shù)SKIPIF1<0,SKIPIF1<0.(Ⅰ)求證:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;(Ⅱ)若函數(shù)SKIPIF1<0在(1,+∞)上有唯一零點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍.【思路引導(dǎo)】(Ⅰ)求導(dǎo)SKIPIF1<0,得SKIPIF1<0,分析單調(diào)性得當(dāng)SKIPIF1<0時(shí),SKIPIF1<0即得證;(Ⅱ)SKIPIF1<0對(duì)t進(jìn)行討論①SKIPIF1<0,SKIPIF1<0在[1,+∞)上是增函數(shù),所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在(1,+∞)上沒(méi)有零點(diǎn),②若SKIPIF1<0,SKIPIF1<0在[1,+∞)上是減函數(shù),所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在(1,+∞)上沒(méi)有零點(diǎn),③若0<t<1時(shí)分析單調(diào)性借助于第一問(wèn),找到SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,即SKIPIF1<0成立;取SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,說(shuō)明存在SKIPIF1<0,使得SKIPIF1<0,即存在唯一零點(diǎn).(Ⅱ)SKIPIF1<0①若SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在[1,+∞)上是增函數(shù),所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在(1,+∞)上沒(méi)有零點(diǎn),所以SKIPIF1<0不滿足條件.②若SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在[1,+∞)上是減函數(shù),所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在(1,+∞)上沒(méi)有零點(diǎn),所以SKIPIF1<0不滿足條件.點(diǎn)睛:本題考查了利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,最值;考查了分類討論的思想;處理0<t<1時(shí),注意前后問(wèn)間的聯(lián)系,找到SKIPIF1<0,使得SKIPIF1<0,根據(jù)單調(diào)性說(shuō)明唯一存在,這是本題的難點(diǎn)所在;【同步訓(xùn)練】1.已知函數(shù)SKIPIF1<0.(Ⅰ)若SKIPIF1<0在SKIPIF1<0處取極值,求SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(Ⅱ)當(dāng)SKIPIF1<0時(shí),若SKIPIF1<0有唯一的零點(diǎn)SKIPIF1<0,求證:SKIPIF1<0【思路引導(dǎo)】本題考查導(dǎo)數(shù)的幾何意義及導(dǎo)數(shù)在研究函數(shù)單調(diào)性、極值中的應(yīng)用.(Ⅰ)根據(jù)函數(shù)在SKIPIF1<0處取極值可得SKIPIF1<0,然后根據(jù)導(dǎo)數(shù)的幾何意義求得切線方程即可.(Ⅱ)由(Ⅰ)知SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.結(jié)合函數(shù)的單調(diào)性和函數(shù)值可得SKIPIF1<0在SKIPIF1<0上有唯一零點(diǎn),設(shè)為SKIPIF1<0,證明SKIPIF1<0即可得結(jié)論.(Ⅱ)由(Ⅰ)知SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0由SKIPIF1<0,可得SKIPIF1<0SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.又SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;又SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上有唯一零點(diǎn),設(shè)為SKIPIF1<0,從而可知SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,因?yàn)镾KIPIF1<0有唯一零點(diǎn)SKIPIF1<0,故SKIPIF1<0且SKIPIF1<02.已知函數(shù)SKIPIF1<0SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),若函數(shù)SKIPIF1<0恰有一個(gè)零點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍;(2)當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),對(duì)任意SKIPIF1<0,有SKIPIF1<0成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【思路引導(dǎo)】(1)討論SKIPIF1<0、SKIPIF1<0兩種情況,分別利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,結(jié)合函數(shù)的單調(diào)性,利用零點(diǎn)存在定理可得函數(shù)SKIPIF1<0恰有一個(gè)零點(diǎn)時(shí)實(shí)數(shù)SKIPIF1<0的取值范圍;(2)對(duì)任意SKIPIF1<0,有SKIPIF1<0成立,等價(jià)于SKIPIF1<0,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,分別求出最大值與最小值,解不等式即可的結(jié)果.②當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,解得SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.要使函數(shù)SKIPIF1<0有一個(gè)零點(diǎn),則SKIPIF1<0即SKIPIF1<0.綜上所述,若函數(shù)SKIPIF1<0恰有一個(gè)零點(diǎn),則SKIPIF1<0或SKIPIF1<0.(2)因?yàn)閷?duì)任意SKIPIF1<0,有SKIPIF1<0成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0,所以SKIPIF1<0.從而SKIPIF1<0SKIPIF1<0.所以SKIPIF1<0即SKIPIF1<0,設(shè)SKIPIF1<0SKIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.又SKIPIF1<0,所以SKIPIF1<0,即為SKIPIF1<0,解得SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0的取值范圍為SKIPIF1<0.3.已知函數(shù)SKIPIF1<0(I)若函數(shù)SKIPIF1<0處取得極值,求實(shí)數(shù)SKIPIF1<0的值;并求此時(shí)SKIPIF1<0上的最大值;(Ⅱ)若函數(shù)SKIPIF1<0不存在零點(diǎn),求實(shí)數(shù)a的取值范圍;【思路引導(dǎo)】(1)根據(jù)函數(shù)的極值的概念得到SKIPIF1<0,SKIPIF1<0,根據(jù)函數(shù)的單調(diào)性得到函數(shù)的最值.(2)研究函數(shù)的單調(diào)性,找函數(shù)和軸的交點(diǎn),使得函數(shù)和軸沒(méi)有交點(diǎn)即可;分SKIPIF1<0和SKIPIF1<0,兩種情況進(jìn)行討論.(2)SKIPIF1<0,由于SKIPIF1<0.①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0是增函數(shù),且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,取SKIPIF1<0,則SKIPIF1<0,所以函數(shù)SKIPIF1<0存在零點(diǎn).②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.在SKIPIF1<0上SKIPIF1<0單調(diào)遞減,在SKIPIF1<0上SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0時(shí)SKIPIF1<0取最小值.函數(shù)SKIPIF1<0不存在零點(diǎn),等價(jià)于SKIPIF1<0,解得SKIPIF1<0.綜上所述:所求的實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.點(diǎn)睛:這個(gè)題目考查的是另用導(dǎo)數(shù)研究函數(shù)的極值和最值問(wèn)題,函數(shù)的零點(diǎn)問(wèn)題;對(duì)于函數(shù)有解求參的問(wèn)題,常用的方法是,轉(zhuǎn)化為函數(shù)圖像和軸的交點(diǎn)問(wèn)題,或者轉(zhuǎn)化為兩個(gè)函數(shù)圖像的交點(diǎn)問(wèn)題,還可以轉(zhuǎn)化為方程的根的問(wèn)題.4.已知函數(shù)SKIPIF1<0,其中SKIPIF1<0是自然數(shù)的底數(shù),SKIPIF1<0.(Ⅰ)求實(shí)數(shù)SKIPIF1<0的單調(diào)區(qū)間.(Ⅱ)當(dāng)SKIPIF1<0時(shí),試確定函數(shù)SKIPIF1<0的零點(diǎn)個(gè)數(shù),并說(shuō)明理由.【思路引導(dǎo)】(Ⅰ)SKIPIF1<0,令SKIPIF1<0,解出SKIPIF1<0,SKIPIF1<0,解出SKIPIF1<0,即可得SKIPIF1<0的單調(diào)區(qū)間(Ⅱ)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,現(xiàn)考慮函數(shù)SKIPIF1<0的零點(diǎn),令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,考慮函數(shù)SKIPIF1<0與SKIPIF1<0的交點(diǎn),兩者相切SKIPIF1<0,解得SKIPIF1<0,此時(shí)SKIPIF1<0,所以SKIPIF1<0,故函數(shù)SKIPIF1<0與SKIPIF1<0無(wú)交點(diǎn),即可得結(jié)果.點(diǎn)睛:本題考查了利用導(dǎo)數(shù)研究函數(shù)單調(diào)區(qū)間,研究函數(shù)零點(diǎn)問(wèn)題,第二問(wèn)中對(duì)SKIPIF1<0進(jìn)行這樣處理,很容易確定一個(gè)零點(diǎn)0,考慮函數(shù)SKIPIF1<0的零點(diǎn)時(shí)使用換元法,簡(jiǎn)化函數(shù)式,很容易利用初等函數(shù)即可解決.5.已知函數(shù)SKIPIF1<0,SKIPIF1<0.(Ⅰ)求曲線SKIPIF1<0在SKIPIF1<0處的切線方程.(Ⅱ)求SKIPIF1<0的單調(diào)區(qū)間.(Ⅲ)設(shè)SKIPIF1<0,其中SKIPIF1<0,證明:函數(shù)SKIPIF1<0僅有一個(gè)零點(diǎn).【思路引導(dǎo)】(Ⅰ)求導(dǎo)SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0可得SKIPIF1<0在SKIPIF1<0處的切線方程(Ⅱ)令SKIPIF1<0,解出SKIPIF1<0,令SKIPIF1<0,解出SKIPIF1<0,可得SKIPIF1<0的單調(diào)區(qū)間.(Ⅲ)SKIPIF1<0,SKIPIF1<0SKIPIF1<0在SKIPIF1<0單調(diào)遞增在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,且SKIPIF1<0極大值SKIPIF1<0,SKIPIF1<0極小值SKIPIF1<0可得SKIPIF1<0在SKIPIF1<0無(wú)零點(diǎn),在SKIPIF1<0有一個(gè)零點(diǎn),所以SKIPIF1<0有且僅有一個(gè)零點(diǎn).點(diǎn)睛:本題考查了利用導(dǎo)數(shù)求函數(shù)在某點(diǎn)處的切線,考查了函數(shù)的單調(diào)區(qū)間,考查了利用導(dǎo)數(shù)研究零點(diǎn)問(wèn)題,注意SKIPIF1<0處理時(shí)采用因式分解很容易得出SKIPIF1<0的根,考查了學(xué)生推理運(yùn)算的能力,屬于中檔題.6.設(shè)函數(shù)SKIPIF1<0(Ⅰ)當(dāng)SKIPIF1<0(SKIPIF1<0為自然對(duì)數(shù)的底數(shù))時(shí),求SKIPIF1<0的極小值;(Ⅱ)若函數(shù)SKIPIF1<0存在唯一零點(diǎn),求SKIPIF1<0的取值范圍.【思路引導(dǎo)】(1)先求導(dǎo)數(shù),再求導(dǎo)函數(shù)零點(diǎn),列表分析導(dǎo)函數(shù)符號(hào)變化規(guī)律,進(jìn)而確定極值(2)先化簡(jiǎn)SKIPIF1<0,再利用參變分離法得SKIPIF1<0,利用導(dǎo)數(shù)研究函數(shù)SKIPIF1<0,由圖像可得存在唯一零點(diǎn)時(shí)SKIPIF1<0的取值范圍試題解析:(1)由題設(shè),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0.∴當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,結(jié)合SKIPIF1<0的圖象(如圖),可知當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0有且只有一個(gè)零點(diǎn);當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0有且只有一個(gè)零點(diǎn).所以,當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),函數(shù)SKIPIF1<0有且只有一個(gè)零點(diǎn).點(diǎn)睛:利用函數(shù)零點(diǎn)的情況求參數(shù)值或取值范圍的方法(1)利用零點(diǎn)存在的判定定理構(gòu)建不等式求解.(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問(wèn)題求解.(3)轉(zhuǎn)化為兩熟悉的函數(shù)圖象的上、下關(guān)系問(wèn)題,從而構(gòu)建不等式求解.7.已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求函數(shù)SKIPIF1<0的極值;(2)若函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍.【思路引導(dǎo)】(1)函數(shù)求導(dǎo)得SKIPIF1<0,討論導(dǎo)數(shù)的單調(diào)性即可得極值;(2)函數(shù)求導(dǎo)得SKIPIF1<0,討論SKIPIF1<0,SKIPIF1<0,SKIPIF1<0和SKIPIF1<0時(shí)函數(shù)的單調(diào)性及最值即可下結(jié)論.(2)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),易知函數(shù)SKIPIF1<0只有一個(gè)零點(diǎn),不符合題意;當(dāng)SKIPIF1<0時(shí),在SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞減;在SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞增;SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0→SKIPIF1<0,SKIPIF1<0→SKIPIF1<0,所以函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn).當(dāng)SKIPIF1<0時(shí),在SKIPIF1<0和SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞增;在SKIPIF1<0上SKIPIF1<0,SKIPIF1<0單調(diào)遞減;SKIPIF1<0,函數(shù)SKIPIF1<0至多有一個(gè)零點(diǎn),不符合題意.當(dāng)SKIPIF1<0時(shí),在SKIPIF1<0和SKIPIF1<0上SKIPIF1<0,SKIPIF1<0單調(diào)遞增;在SKIPIF1<0上SKIPIF1<0,SKIPIF1<0單調(diào)遞減;SKIPIF1<0,函數(shù)SKIPIF1<0至多有一個(gè)零點(diǎn),不符合題意.綜上:實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.點(diǎn)睛:根據(jù)函數(shù)零點(diǎn)求參數(shù)取值,也是高考經(jīng)常涉及的重點(diǎn)問(wèn)題,(1)利用零點(diǎn)存在的判定定理構(gòu)建不等式求解;(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問(wèn)題求解,如果涉及由幾個(gè)零點(diǎn)時(shí),還需考慮函數(shù)的圖象與參數(shù)的交點(diǎn)個(gè)數(shù);(3)轉(zhuǎn)化為兩熟悉的函數(shù)圖象的上、下關(guān)系問(wèn)題,從而構(gòu)建不等式求解.8.已知SKIPIF1<0,SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的增區(qū)間;(2)若函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍,并說(shuō)明理由;(3)設(shè)正實(shí)數(shù)SKIPIF1<0,SKIPIF1<0滿足當(dāng)SKIPIF1<0時(shí),求證:對(duì)任意的兩個(gè)正實(shí)數(shù)SKIPIF1<0,SKIPIF1<0總有SKIPIF1<0.(參考求導(dǎo)公式:SKIPIF1<0)【思路引導(dǎo)】(1)求導(dǎo)SKIPIF1<0,對(duì)SKIPIF1<0進(jìn)行分類討論,可得函數(shù)SKIPIF1<0的增區(qū)間;(2)由(1)知:若SKIPIF1<0函數(shù)在SKIPIF1<0的上為增函數(shù),函數(shù)SKIPIF1<0有至多有一個(gè)零點(diǎn),不合題意.若SKIPIF1<0可知SKIPIF1<0,要使得函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn),則SKIPIF1<0SKIPIF1<0,以下證明SKIPIF1<0函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn)即可(3)證明:不妨設(shè)SKIPIF1<0,以SKIPIF1<0為變量,令SKIPIF1<0,則可以證明SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增;因?yàn)镾KIPIF1<0所以SKIPIF1<0,這樣就證明了SKIPIF1<0SKIPIF1<0而SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0存在惟一零點(diǎn);又SKIPIF1<0令SKIPIF1<0SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0上遞增,所以的SKIPIF1<0SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0也存在惟一零點(diǎn);綜上:SKIPIF1<0函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn)方法2:(先證:SKIPIF1<0有SKIPIF1<0)SKIPIF1<0SKIPIF1<0而SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0也存在惟一零點(diǎn);綜上:SKIPIF1<0,函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn).(3)證明:不妨設(shè)SKIPIF1<0,以SKIPIF1<0為變量令SKIPIF1<0,則SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0因?yàn)镾KIPIF1<0,所以SKIPIF1<0;即SKIPIF1<0在定義域內(nèi)遞增.又因?yàn)镾KIPIF1<0且SKIPIF1<0所以SKIPIF1<0即SKIPIF1<0,所以SKIPIF1<0;又因?yàn)镾KIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增;因?yàn)镾KIPIF1<0所以SKIPIF1<0即SKIPIF1<0【點(diǎn)睛】本題考查運(yùn)用導(dǎo)數(shù)知識(shí)研究函數(shù)的圖象與性質(zhì)、函數(shù)的應(yīng)用、不等式問(wèn)題、數(shù)學(xué)歸納法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、推理論證能力,考查數(shù)形結(jié)合思想、函數(shù)與方程思想、特殊與一般思想等.9.已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0在SKIPIF1<0處的切線方程;(2)令SKIPIF1<0,討論函數(shù)SKIPIF1<0的零點(diǎn)的個(gè)數(shù);(3)若SKIPIF1<0,正實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,證明SKIPIF1<0【思路引導(dǎo)】(1)求出SKIPIF1<0的解析式,求出切點(diǎn)坐標(biāo),再求出SKIPIF1<0,由出SKIPIF1<0的值,可得切線斜率,利用點(diǎn)斜式求出切線方程即可;(2)求導(dǎo)數(shù),分三種情況討論,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,分別結(jié)合函數(shù)單調(diào)性判斷出函數(shù)SKIPIF1<0的零點(diǎn)的個(gè)數(shù);(3)SKIPIF1<0,化為SKIPIF1<0,設(shè)SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,然后結(jié)合函數(shù)單調(diào)性得到SKIPIF1<0,解不等式可得結(jié)論.(3)證明:當(dāng)所以即為:所以令所以所以所以因?yàn)椤痉椒c(diǎn)晴】本題主要考查利用導(dǎo)數(shù)求曲線切線以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,屬于難題.求曲線切線方程的一般步驟是:(1)求出SKIPIF1<0在SKIPIF1<0處的導(dǎo)數(shù),即SKIPIF1<0在點(diǎn)SKIPIF1<0SKIPIF1<0出的切線斜率(當(dāng)曲線SKIPIF1<0在SKIPIF1<0處的切線與SKIPIF1<0軸平行時(shí),在處導(dǎo)數(shù)不存在,切線方程為SKIPIF1<0);(2)由點(diǎn)斜式求得切線方程SKIPIF1<0.10.已知函數(shù)SKIPIF1<0(SKIPIF1<0).(1)判斷函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上零點(diǎn)的個(gè)數(shù);(2)當(dāng)SKIPIF1<0時(shí),若在SKIPIF1<0(SKIPIF1<0)上存在一點(diǎn)SKIPIF1<0,使得SKIPIF1<0成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【思路引導(dǎo)】SKIPIF1<0令SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,記SKIPIF1<0,SKIPIF1<0,求得導(dǎo)數(shù),利用函數(shù)單調(diào)性可以求得函數(shù)極值點(diǎn)以此判斷函數(shù)SKIPIF1<0在SKIPIF1<0上的零點(diǎn)個(gè)數(shù);SKIPIF1<0本題不宜分離,因此作差構(gòu)造函數(shù)SKIPIF1<0,利用分類討論法求函數(shù)最小值,由于SKIPIF1<0,所以討論SKIPIF1<0與SKIPIF1<0的大小,分三種情況,當(dāng)SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0,解對(duì)應(yīng)不等式即可.②當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0的最小值為SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0.③當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),可得SKIPIF1<0的最小值為SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,此時(shí)SKIPIF1<0不成立.綜上所述,實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.點(diǎn)睛:對(duì)于求不等式成立時(shí)的參數(shù)范圍問(wèn)題,在可能的情況下把參數(shù)分離出來(lái),使不等式一端是含有參數(shù)的不等式,另一端是一個(gè)區(qū)間上具體的函數(shù),這樣就把問(wèn)題轉(zhuǎn)化為一端是函數(shù),另一端是參數(shù)的不等式,便于問(wèn)題的解決.但要注意分離參數(shù)法不是萬(wàn)能的,如果分離參數(shù)后,得出的函數(shù)解析式較為復(fù)雜,性質(zhì)很難研究,就不要使用分離參數(shù)法.11.已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0在SKIPIF1<0處的切線方程;(2)試判斷SKIPIF1<0在區(qū)間SKIPIF1<0上有沒(méi)有零點(diǎn)?若有則判斷零點(diǎn)的個(gè)數(shù).【思路引導(dǎo)】(1)利用導(dǎo)數(shù)的幾何意義求切線方程.(2)利用導(dǎo)數(shù)求出函數(shù)的極大值和極小值,判斷極值與0的關(guān)系明確零點(diǎn)個(gè)數(shù).試題解析:12.已知函數(shù)SKIPIF1<0,其中SKIPIF1<0為自然對(duì)數(shù)的底數(shù).(1)當(dāng)SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0的極值;(2)當(dāng)SKIPIF1<0時(shí),討論函數(shù)SKIPIF1<0的定義域內(nèi)的零點(diǎn)個(gè)數(shù).【思路引導(dǎo)】(1)求出SKIPIF1<0,SKIPIF1<0求得SKIPIF1<0的范圍,可得函數(shù)SKIPIF1<0增區(qū)間,SKIPIF1<0求得SKIPIF1<0的范圍,可得函數(shù)SKIPIF1<0的減區(qū)間,根據(jù)單調(diào)性可得函數(shù)的極值;(2)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可證明函數(shù)SKIPIF1<0恒成立,即證明SKIPIF1<0在定義域內(nèi)無(wú)零點(diǎn).試題解析:(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0單調(diào)增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0單調(diào)減,所以SKIPIF1<0是SKIPIF1<0的極大值點(diǎn),極大值是SKIPIF1<0.(2)由已知SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,【方法點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性、函數(shù)的極值以及函數(shù)零點(diǎn)問(wèn)題,屬于難題.求函數(shù)SKIPIF1<0極值的步驟:(1)確定函數(shù)的定義域;(2)求導(dǎo)數(shù)SKIPIF1<0;(3)解方程SKIPIF1<0求出函數(shù)定義域內(nèi)的所有根;(4)列表檢查SKIPIF1<0在SKIPIF1<0的根SKIPIF1<0左右兩側(cè)值的符號(hào),如果左正右負(fù)(左增右減),那么SKIPIF1<0在SKIPIF1<0處取極大值,如果左負(fù)右正(左減右增),那么SKIPIF1<0在SKIPIF1<0處取極小值.13.已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論