




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
13-BasicImageOperations
YongXu(許勇)
SchoolofComputerScience&Engineering2ContentHistogramsPointoperators(點運算)Imagenoise(圖像噪聲)Groupoperations(群運算)Individualbrightnesslevels’(亮度級)occupanciesTheimagecontrastTherangeofbrightnesslevels
Howtomaketheimageclearer?3HistogramsAdvantageSimple,quick,somewhateffectiveDisadvantageCannotdescribespatialinformationCannotdescribetheimagedetails4HistogramsTwocompletelydifferentimagewhichhavesimilarhistograms5PyramidHistogram6PyramidHistogram7DistinguishableSimilarDifferentDifferentInvariant?UseafunctionThepointatthesameplaceintheoriginalimageMathematicalfunctionBasicpointoperations(基本點運算)BecomputedfromtheimageitselfHistogramnormalization(直方圖正規(guī)化)Histogramequalization(直方圖均衡化)Histogramspecification(直方圖匹配)Thresholding(閾值處理)9PointOperatorsAlinearbrightnessrelation
k:gain(增益),l:level(偏移量)
10BasicPointOperationsk=1.2l=10Originalimage11BasicPointOperationsk,l?12BasicPointOperationsk=1,l=0k=-1,l=255k=1,l=35k=1.1,l=-1013BasicPointOperationsThesawtoothoperator(鋸齒算子)AnalternativeformofthelinearoperatorEmphasizelocalcontrastchange14BasicPointOperationsy=xmod50y=xmod100y=xmod90y=xmod80y=xmod70y=xmod6015TheSawtoothOperatory=(xmod50)*255/49y=(xmod60)*255/59y=(xmod70)*255/69y=(xmod80)*255/79y=(xmod90)*255/89y=(xmod100)*255/9916TheSawtoothOperatorOriginalimagemod50mod60mod7017TheSawtoothOperatorOriginalimagemod80mod90mod100ArithmeticfunctionsLogarithm
Darker,asmallrangeofbrightnesslevels18BasicpointoperationsOriginalpictureLogarithm25log(50f(x,y))log(50f(x,y))log(f(x,y))LogarithmLogarithm19BasicPointOperationsExponent30exp(f(x,y)/100)OriginalpictureArithmeticfunctionsExponentBrighter,greatercontrastexp(f(x,y)/100)exp(f(x,y))ExponentExponentStretchandshifttheoriginalhistogramCoverallthe256availablelevels20HistogramNormalizationOriginalimageNormalizedimage21HistogramNormalizationOriginalimageNormalizationimageAnonlinearprocessandirreversibleProduceapicturewithaflatterhistogramAlllevelsareequiprobableThemappingfunctionContinuous22HistogramEqualization
ThemappingfunctionDiscrete23HistogramEqualization1399821373360646820529260
h0312243441516471829300.1210.0820.1630.1640.0450.0460.1670.0480.0890.12
f
p(i)00.1210.2020.3630.5240.5650.6060.7670.8080.8891.00
s(i)OriginalimageHistogram2400.1210.2020.3630.5240.5650.6060.7670.8080.8891.001399821373360646820529260511332552552249251133204133133194019414319422492015392255921940
f
gHistogramEqualization
s(i)
255s(i)round
numbers25HistogramEqualizationOriginalimageEqualizedimage26HistogramEqualizationOriginalimageEqualizationimage27HistogramEqualization28HistogramEqualizationNormalizationEqualization29HistogramEqualizationOriginalimageNormalization
Equalization30HistogramEqualizationOriginalimageNormalization
Equalization31HistogramEqualizationOriginalimageNormalization
Equalization32HistogramEqualizationOriginalimageNormalization
Equalization33HistogramEqualizationOriginalimageNormalization
Equalization34HistogramEqualizationOriginalimageNormalization
EqualizationForthecolorimageDohistogramnormalizationineachchannelDohistogramequalizationineachchannel35HistogramEqualizationChannel1Channel2Channel3OriginalimageNormalization
EqualizationHistogramnormalizationAlinearprocessandreversibleHistogramequalizationAnonlinearprocessandirreversible36HistogramEqualizationTheconvertedimagehasaparticularhistogram.ContinuousDiscrete37HistogramSpecificationOriginal->equalizeDesired->equalizeFinalOriginal->equalizeDesired->equalizeFinal38HistogramSpecificationDesiredequalizeequalizegg-1OriginalFinalminimal39HistogramSpecificationxipx(i)f00.190.1910.250.4420.210.6530.160.8140.080.8950.060.9560.030.9870.021.00gpz(i)zi0.000.0000.000.0010.000.0020.150.1530.350.2040.650.3050.850.2061.000.157zipz(i)00.0010.0020.0030.1940.2550.2160.2470.11Selectspixels
AparticularvalueAspecifiedrangeUniformthresholding(均一閾值處理)Requireknowledgeofthegraylevel
40ThresholdingOriginalimageT=160OriginalimageT=125Adaptivethresholding(自適應閾值處理)Otsu’smethodMaxthefollowingvaluewhere41ThresholdingContrast42ThresholdingOriginalimageT=160OstuT=127OstuT=117T=125OriginalimageRandomvariationofbrightnessorcolorinformationElectronicnoiseAddspuriousandextraneousinformationProduceThesensor
Circuitryofa
scanner
or
digitalcamera…TypesGaussiannoise(高斯噪聲)Saltandpeppernoise(椒鹽噪聲)43ImageNoisePrincipalsourcesSensornoisePoorilluminationHightemperatureElectroniccircuitnoiseNoiseIndependentateachpixelIndependentofthesignalintensityGaussian-distributed44GaussianNoiseg(x,y,i)=f(x,y,i)+noisef(x,y,i)eachpixelineachchanneloftheoriginalimagex,y:location,i:channelg(x,y,i):eachpixelineachchanneloftheGaussiannoiseimagex,y:location,i:channel
Noise
obeys
a
Gaussian
distributionG(μ,σ)45GaussianNoiseImageGaussiannoiseOriginalimageG(0,1)PrincipalsourcesAnalog-to-digitalconvertererrorsBiterrorsintransmissionNoiseSaltnoiseNoisepoints’valuesare255.PeppernoiseNoisepoints’valuesare0.RandomThenoisedensityisaconstant.46SaltandPepperNoiseIneverychanneloftheoriginalimage
Randomchangesomepixels’values(set0or255)Letthenoisedensityisaconstant47SaltandPepperNoiseImageSaltandpeppernoiseOriginalimageNoisedensity=0.05Useapixel’sneighborhoodTemplateconvolution(模板卷積)Averagingoperator(平均算子)Gaussianaveraging(高斯平均)Medianfilter(中值濾波)Modefilter(眾數(shù)濾波)ComparisonofstatisticaloperatorsMathematicalmorphology(數(shù)學形態(tài)學)48GroupOperationsTemplate--asetofweightingcoefficientsPlacethetemplateatthepointofinterest
Theconvolutionnotation49TemplateConvolutionThetemplateweightingfunctionsareunityAdvantageReducenoiseDisadvantageCauseblurringReducedetail50AveragingOperatorOndifferenttemplatesizeTemplatesareusuallyofodddimension.LargeraveragingoperatorsSmooththeimagemoreRemovemoredetail
51AveragingOperator52AveragingOperator3×35×57×7GaussiannoiseSaltandpeppernoiseOriginalimage53AveragingOperatorOriginalimage3×35×57×7ThresholdingT=10054GaussianAveragingOperatorCalculatecoefficients
Templateforthe5×5Gaussianaveragingoperator(σ=1.0).55GaussianAveragingOperator3×35×57×7GaussiannoiseSaltandpeppernoiseOriginalimageTheGaussianfiltervs.directaveragingMorefeaturesareretainedwhilethenoiseisremoved.56GaussianAveragingOperatorAveragingoperatorGaussianaveragingoperator57GaussianAveragingOperator3×35×57×7GaussiannoiseOriginalimageAveragingoperatorGaussianaveragingoperator58GaussianAveragingOperator3×35×57×7OriginalimageAveragingoperatorGaussianaveragingoperatorSaltandpeppernoise
Alternativetemplateshapes59MedianFilterCrossHorizontallineVerticallineAbilitiesRemovesaltandpeppernoiseRetainedges60MedianFilter61MedianFilterGaussiannoiseSaltandpeppernoiseOriginalimage3×35×57×7Findthebackground62MedianFilter--Application
Averaging(g)
select
middle
value
ofimage1~image6Usethemostfrequentlyoccurringpixelvalue63ModeFilter01221481773150115812191Pixels’frequency77487715877219221500774877777721922150001221481773150115812191Theorderofthemean,themedian,andthemode64ModeFilter774851158170219221500Whatshouldwedo?Thetruncatedmedianfilter(截斷中值濾波)IfthemedianislessthanthemeanIfthemedianisgreaterthanthemean65TruncatedMedianFilters=median–min,upper=median+supperminmedianmeanmaxupperminmedianmeanmaxtruncateupperminmedianmeanminmedianmeanmaxupperminmedianmeanmodeThemedianoftheremainingdistributionapproachesthemode.s=max–median,lower=median-smaxmedianmeanminmaxlowermedianmeanminmaxlowermedianmeanmintruncatemaxlowermedianmeanmaxlowermedianmeanmodeThemedianoftheremainingdistributionapproachesthemode.CharacteristicsRemovesaltandpeppernoiseRetainfeatureboundariesExperience66TruncatedMedianFilter67TruncatedMedianFilterGaussiannoiseSaltandpeppernoiseOriginalimage3×35×57×7AveragingoperatorRemovemuchnoisebutblurfeatureboundariesG
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 技校學習總結(jié)模版
- 六級作文各段及各文體寫作技巧
- 學前兒童發(fā)展 課件 第7章 學前兒童想象的發(fā)展
- 門脈高壓性腸病的臨床護理
- 2025屆山東省濱州市沾化縣八下數(shù)學期末聯(lián)考模擬試題含解析
- 幼兒的傳染病與常見病
- 眼球運動障礙的臨床護理
- 山東省青大附中2025屆七年級數(shù)學第二學期期末學業(yè)水平測試模擬試題含解析
- 大學生職業(yè)規(guī)劃大賽《市場營銷專業(yè)》生涯發(fā)展展示
- 郵政銀行面試試題及答案
- 體育裝備科技創(chuàng)新趨勢
- 第四次教育革命:人工智能如何改變教育
- 宿舍樓施工安全管理體系與措施
- 預防未成年人犯罪的講座
- 醫(yī)療設備維保服務投標方案
- 熱塑性橡膠(白料)MSDS-TPR
- 心肺復蘇質(zhì)控課件
- 安全生產(chǎn)規(guī)章制度和崗位操作規(guī)程的目錄清單及內(nèi)容(無倉儲經(jīng)營單位)
- 甲方對監(jiān)理評價表-副本
- 鼻飼患者胃潴留的危險因素及護理措施
- 護士N2晉級N3述職報告參考課件
評論
0/150
提交評論