2024學生版大二輪數學新高考提高版(京津瓊魯遼粵冀鄂湘渝閩蘇浙黑吉晉皖云豫新甘貴贛桂)專題六 第4講 母題突破1 范圍、最值問題33_第1頁
2024學生版大二輪數學新高考提高版(京津瓊魯遼粵冀鄂湘渝閩蘇浙黑吉晉皖云豫新甘貴贛桂)專題六 第4講 母題突破1 范圍、最值問題33_第2頁
2024學生版大二輪數學新高考提高版(京津瓊魯遼粵冀鄂湘渝閩蘇浙黑吉晉皖云豫新甘貴贛桂)專題六 第4講 母題突破1 范圍、最值問題33_第3頁
2024學生版大二輪數學新高考提高版(京津瓊魯遼粵冀鄂湘渝閩蘇浙黑吉晉皖云豫新甘貴贛桂)專題六 第4講 母題突破1 范圍、最值問題33_第4頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第4講圓錐曲線的綜合問題[考情分析]1.圓錐曲線的綜合問題是高考考查的重點內容,常見的熱點題型有范圍、最值問題,定點、定直線、定值問題及探索性問題.2.以解答題的形式壓軸出現(xiàn),難度較大.母題突破1范圍、最值問題母題(2023·全國甲卷)已知直線x-2y+1=0與拋物線C:y2=2px(p>0)交于A,B兩點,|AB|=4eq\r(15).(1)求p;(2)設F為C的焦點,M,N為C上兩點,eq\o(FM,\s\up6(→))·eq\o(FN,\s\up6(→))=0,求△MFN面積的最小值.思路分析?聯(lián)立方程利用弦長求p?設直線MN:x=my+n和點M,N的坐標?利用eq\o(FM,\s\up6(→))·eq\o(FN,\s\up6(→))=0,得m,n的關系?寫出S△MFN的面積?利用函數性質求S△MFN面積的最小值________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子題1](2023·武漢模擬)已知橢圓C:eq\f(x2,4)+y2=1,橢圓C的右頂點為A,若點P,Q在橢圓C上,且滿足直線AP與AQ的斜率之積為eq\f(1,20),求△APQ面積的最大值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子題2](2023·深圳模擬)已知雙曲線C:x2-y2=1,設點A為C的左頂點,若過點(3,0)的直線l與C的右支交于P,Q兩點,且直線AP,AQ與圓O:x2+y2=1分別交于M,N兩點,記四邊形PQNM的面積為S1,△AMN的面積為S2,求eq\f(S1,S2)的取值范圍.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________規(guī)律方法求解范圍、最值問題的常見方法(1)利用判別式來構造不等關系.(2)利用已知參數的范圍,在兩個參數之間建立函數關系.(3)利用隱含或已知的不等關系建立不等式.(4)利用基本不等式.1.(2023·佛山模擬)在平面直角坐標系中,點O為坐標原點,Meq\b\lc\(\rc\)(\a\vs4\al\co1(-1,0)),N(1,0),Q為線段MN上異于M,N的一動點,點P滿足eq\f(|PM|,|QM|)=eq\f(|PN|,|QN|)=2.(1)求點P的軌跡E的方程;(2)點A,C是曲線E上兩點,且在x軸上方,滿足AM∥NC,求四邊形AMNC面積的最大值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.(2023·溫州模擬)已知拋物線C1:y2=4x-4與雙曲線C2:eq\f(x2,a2)-eq\f(y2,4-a2)=1(1<a<2)相交于A,B兩點,F(xiàn)是C2的右焦點,直線AF分別交C1,C2于C,D(不同于A,B點)兩點,直線BC,BD分別交x軸于P,Q兩點.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論