




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省淄博市高青縣第一中學(xué)2025屆數(shù)學(xué)高二上期末監(jiān)測(cè)模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)的導(dǎo)函數(shù)為,若的圖象如圖所示,則函數(shù)的圖象可能是()A B.C. D.2.曲線與曲線的A.長(zhǎng)軸長(zhǎng)相等 B.短軸長(zhǎng)相等C.離心率相等 D.焦距相等3.已知A(-1,1,2),B(1,0,-1),設(shè)D在直線AB上,且,設(shè)C(λ,+λ,1+λ),若CD⊥AB,則λ的值為()A. B.-C. D.4.已知點(diǎn)F是雙曲線的左焦點(diǎn),點(diǎn)E是該雙曲線的右頂點(diǎn),過F作垂直于x軸的直線與雙曲線交于G、H兩點(diǎn),若是銳角三角形,則該雙曲線的離心率e的取值范圍是()A. B.C. D.5.已知橢圓的左、右焦點(diǎn)分別為、,點(diǎn)在橢圓上,若,則的面積為()A. B.C. D.6.某家大型超市近10天的日客流量(單位:千人次)分別為:2.5、2.8、4.4、3.6.下列圖形中不利于描述這些數(shù)據(jù)的是()A.散點(diǎn)圖 B.條形圖C.莖葉圖 D.扇形圖7.設(shè),分別為具有公共焦點(diǎn)與橢圓和雙曲線的離心率,為兩曲線的一個(gè)公共點(diǎn),且滿足,則的值為A. B.1C.2 D.不確定8.在等比數(shù)列{}中,,,則=()A.9 B.12C.±9 D.±129.已知橢圓C:的左、右焦點(diǎn)分別為F1,F(xiàn)2,過點(diǎn)F1作直線l交橢圓C于M,N兩點(diǎn),則的周長(zhǎng)為()A.3 B.4C.6 D.810.直線,若的傾斜角為60°,則的斜率為()A. B.C. D.11.拋物線有如下光學(xué)性質(zhì):平行于拋物線對(duì)稱軸的入射光線經(jīng)拋物線反射后必過拋物線的焦點(diǎn).已知拋物線的焦點(diǎn)為F,一條平行于y軸的光線從點(diǎn)射出,經(jīng)過拋物線上的點(diǎn)A反射后,再經(jīng)拋物線上的另一點(diǎn)B射出,則經(jīng)點(diǎn)B反射后的反射光線必過點(diǎn)()A. B.C. D.12.設(shè),是兩個(gè)不同的平面,是直線且.“”是“”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.必然事件的概率是________.14.在中,內(nèi)角,,的對(duì)邊分別為,,,若,且,則_______15.已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)求的單調(diào)區(qū)間;16.已知橢圓的左、右焦點(diǎn)為,過作x軸垂線交橢圓于點(diǎn)P,若為等腰直角三角形,則橢圓的離心率是___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)f(x)=ax3+bx2﹣3x在x=﹣1和x=3處取得極值.(1)求a,b的值(2)求f(x)在[﹣4,4]內(nèi)的最值.18.(12分)在平面直角坐標(biāo)系中,已知點(diǎn),,點(diǎn)滿足,記點(diǎn)的軌跡為.(1)求的方程;(2)已知,是經(jīng)過圓上一點(diǎn)且與相切的兩條直線,斜率分別為,,直線的斜率為,求證:為定值.19.(12分)如圖,直角梯形AEFB與菱形ABCD所在平面互相垂直,,,,,,M為AD中點(diǎn).(1)證明:直線面DEF;(2)求二面角的余弦值.20.(12分)如圖1,在△MBC中,,A,D分別為棱BM,MC的中點(diǎn),將△MAD沿AD折起到△PAD的位置,使,如圖2,連結(jié)PB,PC,BD(1)求證:平面PAD⊥平面ABCD;(2)若E為PC中點(diǎn),求直線DE與平面PBD所成角的正弦值21.(12分)已知函數(shù)(1)討論函數(shù)的單調(diào)性;(2)若對(duì)任意的,都有成立,求的取值范圍22.(10分)已知拋物線的頂點(diǎn)是坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且拋物線上的點(diǎn)到焦點(diǎn)的距離是5.(1)求該拋物線的標(biāo)準(zhǔn)方程和的值;(2)若過點(diǎn)的直線與該拋物線交于,兩點(diǎn),求證:為定值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)導(dǎo)函數(shù)大于,原函數(shù)單調(diào)遞增;導(dǎo)函數(shù)小于,原函數(shù)單調(diào)遞減;即可得出正確答案.【詳解】由導(dǎo)函數(shù)得圖象可得:時(shí),,所以在單調(diào)遞減,排除選項(xiàng)A、B,當(dāng)時(shí),先正后負(fù),所以在先增后減,因選項(xiàng)C是先減后增再減,故排除選項(xiàng)C,故選:D.2、D【解析】分別求出兩橢圓的長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)、離心率、焦距,即可判斷【詳解】解:曲線表示焦點(diǎn)在軸上,長(zhǎng)軸長(zhǎng)10,短軸長(zhǎng)為6,離心率為,焦距為8曲線表示焦點(diǎn)在軸上,長(zhǎng)軸長(zhǎng)為,短軸長(zhǎng)為,離心率為,焦距為8對(duì)照選項(xiàng),則正確故選:【點(diǎn)睛】本題考查橢圓的方程和性質(zhì),考查運(yùn)算能力,屬于基礎(chǔ)題3、B【解析】設(shè)D(x,y,z),根據(jù)求出D(,,0),再根據(jù)CD⊥AB得·=2(-λ)+λ-3(-1-λ)=0,解方程即得λ的值.【詳解】設(shè)D(x,y,z),則=(x+1,y-1,z-2),=(2,-1,-3),=(1-x,-y,-1-z),∵=2,∴∴∴D(,,0),=(-λ,-λ,-1-λ),∵⊥,∴·=2(-λ)+λ-3(-1-λ)=0,∴λ=-故選:B【點(diǎn)睛】(1)本題主要考查向量的線性運(yùn)算和空間向量垂直的坐標(biāo)表示,意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理能力.(2).4、B【解析】根據(jù)是等腰三角形且為銳角三角形,得到,即,解得離心率范圍.【詳解】,當(dāng)時(shí),,,不妨取,,是等腰三角形且為銳角三角形,則,即,,即,,解得,故.故選:B.5、B【解析】求出,可知為等腰三角形,取的中點(diǎn),可得出,利用勾股定理求得,利用三角形的面積公式可求得結(jié)果.【詳解】在橢圓中,,,則,所以,,由橢圓的定義可得,取的中點(diǎn),因?yàn)?,則,由勾股定理可得,所以,.故選:B.6、A【解析】根據(jù)數(shù)據(jù)的特征以及各統(tǒng)計(jì)圖表的特征分析即可;【詳解】解:莖葉圖、條形圖、扇形圖均能將數(shù)據(jù)描述出來,并且能夠體現(xiàn)出數(shù)據(jù)的變化趨勢(shì);散點(diǎn)圖表示因變量隨自變量而變化的大致趨勢(shì),故用來描述該超市近10天的日客流量不是很合適;故選:A7、C【解析】根據(jù)題意,設(shè)它們共同的焦距為2c、橢圓的長(zhǎng)軸長(zhǎng)2a、雙曲線的實(shí)軸長(zhǎng)為2m,由橢圓和雙曲線的定義及勾弦定理建立關(guān)于a、c、m的方程,聯(lián)解可得a2+m2=2c2,再根據(jù)離心率的定義求解【詳解】由題意設(shè)焦距為2c,橢圓的長(zhǎng)軸長(zhǎng)2a,雙曲線的實(shí)軸長(zhǎng)為2m,設(shè)P在雙曲線的右支上,由雙曲線的定義得|PF1|﹣|PF2|=2m①由橢圓的定義|PF1|+|PF2|=2a②又∵,∴,可得∠F1PF2=900,故|PF1|2+|PF2|2=4c2③,①平方+②平方,得|PF1|2+|PF2|2=2a2+2m2④將④代入③,化簡(jiǎn)得a2+m2=2c2,即,可得,所以=.故選:C8、D【解析】根據(jù)題意,設(shè)等比數(shù)列的公比為,由等比數(shù)列的性質(zhì)求出,再求出【詳解】根據(jù)題意,設(shè)等比數(shù)列的公比為,若,,則,變形可得,則,故選:9、D【解析】由的周長(zhǎng)為,結(jié)合橢圓的定義,即可求解.【詳解】由題意,橢圓,可得,即,如圖所示,根據(jù)橢圓的定義,可得的周長(zhǎng)為故選:D.10、D【解析】直線,斜率乘積為,斜線斜率等于傾斜角的正切值.【詳解】,,所以.故選:D.11、D【解析】求出、坐標(biāo)可得直線的方程,與拋物線方程聯(lián)立求出,根據(jù)選項(xiàng)可得答案,【詳解】把代入得,所以,所以直線的方程為即,與拋物線方程聯(lián)立解得,所以,因?yàn)榉瓷涔饩€平行于y軸,根據(jù)選項(xiàng)可得D正確,故選:D12、B【解析】,得不到,因?yàn)榭赡芟嘟?,只要和的交線平行即可得到;,,∴和沒有公共點(diǎn),∴,即能得到;∴“”是“”的必要不充分條件.故選B考點(diǎn):必要條件、充分條件與充要條件的判斷.【方法點(diǎn)晴】考查線面平行的定義,線面平行的判定定理,面面平行的定義,面面平行的判定定理,以及充分條件、必要條件,及必要不充分條件的概念,屬于基礎(chǔ)題;并得不到,根據(jù)面面平行的判定定理,只有內(nèi)的兩相交直線都平行于,而,并且,顯然能得到,這樣即可找出正確選項(xiàng).二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】直接由必然事件的定義求解【詳解】因?yàn)楸厝皇录且欢ㄒl(fā)生的,所以必然事件的概率是1,故答案為:114、【解析】代入,展開整理得,①化為,與①式相加得,轉(zhuǎn)化為關(guān)于的方程,求解即可得出結(jié)論.【詳解】因?yàn)?,所以,所以,因?yàn)?,所以,則,整理得,解得.故答案為:.【點(diǎn)睛】本題考查正弦定理的邊角互化,考查三角函數(shù)化簡(jiǎn)求值,屬于中檔題.15、(1)(2)詳見解析【解析】(1)分別求得和,從而得到切線方程;(2)求導(dǎo)后,令求得兩根,分別在、和三種情況下根據(jù)導(dǎo)函數(shù)的正負(fù)得到函數(shù)的單調(diào)區(qū)間.【詳解】(1),,,,又,在處的切線方程為.(2),令,解得:,.①當(dāng)時(shí),若和時(shí),;若時(shí),;的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;②當(dāng)時(shí),在上恒成立,的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;③當(dāng)時(shí),若和時(shí),;若時(shí),;的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;綜上所述:當(dāng)時(shí),的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;當(dāng)時(shí),的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當(dāng)時(shí),的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)的幾何意義求解曲線在某一點(diǎn)處的切線方程、利用導(dǎo)數(shù)討論含參數(shù)函數(shù)的單調(diào)區(qū)間的問題,屬于常考題型.16、##【解析】以為等腰直角三角形列方程組可得之間的關(guān)系式,進(jìn)而求得橢圓的離心率.【詳解】橢圓的左、右焦點(diǎn)為,點(diǎn)P由為等腰直角三角形可知,,即可化為,故或(舍)故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)a,b=﹣1(2)f(x)min=,f(x)max=【解析】(1)先對(duì)函數(shù)求導(dǎo),由題意可得=3ax2+2bx﹣3=0的兩個(gè)根為﹣1和3,結(jié)合方程的根與系數(shù)關(guān)系可求,(2)由(1)可求,然后結(jié)合導(dǎo)數(shù)可判斷函數(shù)的單調(diào)性,進(jìn)而可求函數(shù)的最值.【詳解】解:(1)=3ax2+2bx﹣3,由題意可得=3ax2+2bx﹣3=0的兩個(gè)根為﹣1和3,則,解可得a,b=-1,(2)由(1),易得f(x)在,單調(diào)遞增,在上單調(diào)遞減,又f(﹣4),f(﹣1),f(3)=﹣9,f(4),所以f(x)min=f(﹣4),f(x)max=f(﹣1).【點(diǎn)睛】本題考查利用極值求函數(shù)的參數(shù),以及利用導(dǎo)數(shù)求函數(shù)的最值問題,屬于中檔題18、(1);(2)證明見解析.【解析】(1)根據(jù)雙曲線的定義可得答案;(2)設(shè),過點(diǎn)的的切線方程為,聯(lián)立此直線與雙曲線的方程消元,然后由可得,即可得到,然后可證明.【小問1詳解】因?yàn)?,所以點(diǎn)的軌跡是以為焦點(diǎn)的雙曲線的右支,所以,,所以,所以的方程為【小問2詳解】設(shè),則,設(shè)過點(diǎn)的切線方程為,聯(lián)立可得由可得,所以所以19、(1)證明見解析(2)【解析】(1)由平面平面ABCD,可得平面ABCD,連接BD,可得,以為原點(diǎn),為軸,豎直向上為軸建立空間直角坐標(biāo)系,利用向量法計(jì)算與平面的法向量的數(shù)量積為0即可得證;(2)分別計(jì)算出平面和平面的法向量,然后利用向量夾角公式即可求解.【小問1詳解】證明:因?yàn)槠矫嫫矫鍭BCD,平面平面ABCD,且,所以平面ABCD,連接BD,則等邊三角形,所以,以為原點(diǎn),為軸,豎直向上為軸建立如圖所示的空間直角坐標(biāo)系,則,設(shè)為平面的法向量,因?yàn)?,則有,取,又因?yàn)?,所以,因?yàn)槠矫?,所以平面;【小?詳解】解:分別設(shè)為平面和平面的法向量,因?yàn)?,則有,取,因,則有,取,所以,由圖可知二面角為銳二面角,所以二面角的余弦值為.20、(1)證明見解析;(2).【解析】(1)推導(dǎo)出,,利用線面垂直的判定定理可得平面,再利用面面垂直的判定定理即可證明;(2)以A為坐標(biāo)原點(diǎn),建立如圖空間直角坐標(biāo)系,利用向量法即可求出直線DE與平面所成角的正弦值.【小問1詳解】由題意知,因?yàn)辄c(diǎn)A、D分別為MB、MC中點(diǎn),所以,又,所以,所以.因?yàn)椋?,又,所以平面,又平面,所以平面平面;【小?詳解】因?yàn)?,,,所以兩兩垂直,以A為坐標(biāo)原點(diǎn),建立如圖空間直角坐標(biāo)系,,則,設(shè)平面的一個(gè)法向量為,則,令,得,所以,設(shè)直線DE與平面所成角為,則,所以直線DE與平面所成角的正弦值為.21、(1)答案見解析;(2).【解析】(1)求,分別討論不同范圍下的正負(fù),分別求單調(diào)性;(2)由(1)所求的單調(diào)性,結(jié)合,分別求出的范圍再求并集即可.【詳解】解:(1)由已知定義域?yàn)椋?dāng),即時(shí),恒成立,則在上單調(diào)遞增;當(dāng),即時(shí),(舍)或,所以在上單調(diào)遞減,在上單調(diào)遞增.所以時(shí),在上單調(diào)遞增;時(shí),在上單調(diào)遞減,在上單調(diào)遞增.(2)由(1)可知,當(dāng)時(shí),在上單調(diào)遞增,若對(duì)任意的恒成立,只需,而恒成立,所以成立;當(dāng)時(shí),若,即,則在上單調(diào)遞增,又,所以成立;若,則在上單調(diào)遞減,在上單調(diào)遞增,又,所以,,不滿足對(duì)任意的恒成立.所以綜上所述:.22、(1),(2)證明見解析【解析】(1)根據(jù)點(diǎn)到焦點(diǎn)的距離等于5,利用拋物線的定義求得p,進(jìn)而得到拋物線方程,然后將點(diǎn)代入拋物線求解;(2)方法一:設(shè)直線方程為:,與拋物線方程聯(lián)立,結(jié)合韋達(dá)定理,利用數(shù)量積的運(yùn)算求解;方法二:根據(jù)直線過點(diǎn),分直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆河北省永年縣一中高一物理第二學(xué)期期末監(jiān)測(cè)模擬試題含解析
- 教育技術(shù)應(yīng)用與文化傳承的關(guān)系研究
- 教育技術(shù)中的專利申請(qǐng)與風(fēng)險(xiǎn)規(guī)避
- 2025屆江西省豐城二中高二物理第二學(xué)期期末預(yù)測(cè)試題含解析
- 2025屆廣東省廣州市番禺區(qū)禺山高級(jí)中學(xué)物理高一下期末調(diào)研模擬試題含解析
- 探索教育游戲化如何影響孩子的情緒認(rèn)知能力
- 教育技術(shù)項(xiàng)目的投資規(guī)劃與風(fēng)險(xiǎn)控制
- 福建省師范大學(xué)附中2025年高一物理第二學(xué)期期末考試試題含解析
- 醫(yī)療培訓(xùn)中融入教育心理學(xué)的效果評(píng)估
- 技術(shù)如何塑造現(xiàn)代辦公模式
- 暑假的一次冒險(xiǎn)經(jīng)歷記事作文4篇范文
- 入職預(yù)支薪資協(xié)議書
- 《中國(guó)特色社會(huì)主義理論體系的形成和發(fā)展》(課件)
- 職業(yè)技術(shù)學(xué)院嬰幼兒托育服務(wù)與管理專業(yè)人才培養(yǎng)方案
- 2025臺(tái)州市椒江區(qū)輔警考試試卷真題
- 中學(xué)生零食消費(fèi)情況調(diào)查與分析
- 國(guó)開本科《管理英語4》機(jī)考總題庫及答案
- 軟裝行業(yè)競(jìng)品分析報(bào)告
- 公司收購公司協(xié)議書
- 基于移動(dòng)端的互聯(lián)網(wǎng)金融服務(wù)創(chuàng)新研究
- T∕CACM 024-2017 中醫(yī)臨床實(shí)踐指南 穴位埋線減肥
評(píng)論
0/150
提交評(píng)論