




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖南省G10教育聯(lián)盟2025屆高三4月考數(shù)學(xué)試題理試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數(shù)列的前項和為,且,則()A.45 B.42 C.25 D.362.陀螺是中國民間較早的娛樂工具之一,但陀螺這個名詞,直到明朝劉侗、于奕正合撰的《帝京景物略》一書中才正式出現(xiàn).如圖所示的網(wǎng)格紙中小正方形的邊長均為1,粗線畫出的是一個陀螺模型的三視圖,則該陀螺模型的表面積為()A. B.C. D.3.函數(shù)在區(qū)間上的大致圖象如圖所示,則可能是()A.B.C.D.4.已知點P在橢圓τ:=1(a>b>0)上,點P在第一象限,點P關(guān)于原點O的對稱點為A,點P關(guān)于x軸的對稱點為Q,設(shè),直線AD與橢圓τ的另一個交點為B,若PA⊥PB,則橢圓τ的離心率e=()A. B. C. D.5.過點的直線與曲線交于兩點,若,則直線的斜率為()A. B.C.或 D.或6.已知實數(shù),,函數(shù)在上單調(diào)遞增,則實數(shù)的取值范圍是()A. B. C. D.7.已知函數(shù),若,則等于()A.-3 B.-1 C.3 D.08.若兩個非零向量、滿足,且,則與夾角的余弦值為()A. B. C. D.9.在直角坐標(biāo)平面上,點的坐標(biāo)滿足方程,點的坐標(biāo)滿足方程則的取值范圍是()A. B. C. D.10.設(shè)點,P為曲線上動點,若點A,P間距離的最小值為,則實數(shù)t的值為()A. B. C. D.11.趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約在公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個全等的直角三角形再加上中間的一個小正方形組成的).類比“趙爽弦圖”.可類似地構(gòu)造如下圖所示的圖形,它是由3個全等的三角形與中間的一個小等邊三角形拼成一個大等邊三角形.設(shè),若在大等邊三角形中隨機(jī)取一點,則此點取自小等邊三角形(陰影部分)的概率是()A. B. C. D.12.函數(shù)的圖像大致為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量滿足,且,則_________.14.《九章算術(shù)》是中國古代的數(shù)學(xué)名著,其中《方田》一章給出了弧田面積的計算公式.如圖所示,弧田是由圓弧AB和其所對弦AB圍成的圖形,若弧田的弧AB長為4π,弧所在的圓的半徑為6,則弧田的弦AB長是__________,弧田的面積是__________.15.從集合中隨機(jī)取一個元素,記為,從集合中隨機(jī)取一個元素,記為,則的概率為_______.16.函數(shù)滿足,當(dāng)時,,若函數(shù)在上有1515個零點,則實數(shù)的范圍為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某企業(yè)為了了解該企業(yè)工人組裝某產(chǎn)品所用時間,對每個工人組裝一個該產(chǎn)品的用時作了記錄,得到大量統(tǒng)計數(shù)據(jù).從這些統(tǒng)計數(shù)據(jù)中隨機(jī)抽取了個數(shù)據(jù)作為樣本,得到如圖所示的莖葉圖(單位:分鐘).若用時不超過(分鐘),則稱這個工人為優(yōu)秀員工.(1)求這個樣本數(shù)據(jù)的中位數(shù)和眾數(shù);(2)以這個樣本數(shù)據(jù)中優(yōu)秀員工的頻率作為概率,任意調(diào)查名工人,求被調(diào)查的名工人中優(yōu)秀員工的數(shù)量分布列和數(shù)學(xué)期望.18.(12分)已知命題:,;命題:函數(shù)無零點.(1)若為假,求實數(shù)的取值范圍;(2)若為假,為真,求實數(shù)的取值范圍.19.(12分)在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為(,為參數(shù)),在以O(shè)為極點,x軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心在極軸上,且經(jīng)過極點的圓.已知曲線上的點M對應(yīng)的參數(shù),射線與曲線交于點.(1)求曲線,的直角坐標(biāo)方程;(2)若點A,B為曲線上的兩個點且,求的值.20.(12分)在中,角的對邊分別為,且.(1)求角的大??;(2)若,求邊上的高.21.(12分)以坐標(biāo)原點為極點,軸的正半軸為極軸,且在兩種坐標(biāo)系中取相同的長度單位,建立極坐標(biāo)系,判斷直線為參數(shù))與圓的位置關(guān)系.22.(10分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),以坐標(biāo)原點為極點,軸的正半軸為極軸,取相同長度單位建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的普通方程;(2)設(shè)射線與曲線交于不同于極點的點,與曲線交于不同于極點的點,求線段的長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
由等差數(shù)列的性質(zhì)可知,進(jìn)而代入等差數(shù)列的前項和的公式即可.【詳解】由題,.故選:D本題考查等差數(shù)列的性質(zhì),考查等差數(shù)列的前項和.2.C【解析】
根據(jù)三視圖可知,該幾何體是由兩個圓錐和一個圓柱構(gòu)成,由此計算出陀螺的表面積.【詳解】最上面圓錐的母線長為,底面周長為,側(cè)面積為,下面圓錐的母線長為,底面周長為,側(cè)面積為,沒被擋住的部分面積為,中間圓柱的側(cè)面積為.故表面積為,故選C.本小題主要考查中國古代數(shù)學(xué)文化,考查三視圖還原為原圖,考查幾何體表面積的計算,屬于基礎(chǔ)題.3.B【解析】
根據(jù)特殊值及函數(shù)的單調(diào)性判斷即可;【詳解】解:當(dāng)時,,無意義,故排除A;又,則,故排除D;對于C,當(dāng)時,,所以不單調(diào),故排除C;故選:B本題考查根據(jù)函數(shù)圖象選擇函數(shù)解析式,這類問題利用特殊值與排除法是最佳選擇,屬于基礎(chǔ)題.4.C【解析】
設(shè),則,,,設(shè),根據(jù)化簡得到,得到答案.【詳解】設(shè),則,,,則,設(shè),則,兩式相減得到:,,,即,,,故,即,故,故.故選:.本題考查了橢圓的離心率,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.5.A【解析】
利用切割線定理求得,利用勾股定理求得圓心到弦的距離,從而求得,結(jié)合,求得直線的傾斜角為,進(jìn)而求得的斜率.【詳解】曲線為圓的上半部分,圓心為,半徑為.設(shè)與曲線相切于點,則所以到弦的距離為,,所以,由于,所以直線的傾斜角為,斜率為.故選:A本小題主要考查直線和圓的位置關(guān)系,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.6.D【解析】
根據(jù)題意,對于函數(shù)分2段分析:當(dāng),由指數(shù)函數(shù)的性質(zhì)分析可得①,當(dāng),由導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系可得,在上恒成立,變形可得②,再結(jié)合函數(shù)的單調(diào)性,分析可得③,聯(lián)立三個式子,分析可得答案.【詳解】解:根據(jù)題意,函數(shù)在上單調(diào)遞增,
當(dāng),若為增函數(shù),則①,
當(dāng),若為增函數(shù),必有在上恒成立,
變形可得:,
又由,可得在上單調(diào)遞減,則,
若在上恒成立,則有②,
若函數(shù)在上單調(diào)遞增,左邊一段函數(shù)的最大值不能大于右邊一段函數(shù)的最小值,則需有,③
聯(lián)立①②③可得:.
故選:D.本題考查函數(shù)單調(diào)性的性質(zhì)以及應(yīng)用,注意分段函數(shù)單調(diào)性的性質(zhì).7.D【解析】分析:因為題設(shè)中給出了的值,要求的值,故應(yīng)考慮兩者之間滿足的關(guān)系.詳解:由題設(shè)有,故有,所以,從而,故選D.點睛:本題考查函數(shù)的表示方法,解題時注意根據(jù)問題的條件和求解的結(jié)論之間的關(guān)系去尋找函數(shù)的解析式要滿足的關(guān)系.8.A【解析】
設(shè)平面向量與的夾角為,由已知條件得出,在等式兩邊平方,利用平面向量數(shù)量積的運(yùn)算律可求得的值,即為所求.【詳解】設(shè)平面向量與的夾角為,,可得,在等式兩邊平方得,化簡得.故選:A.本題考查利用平面向量的模求夾角的余弦值,考查平面向量數(shù)量積的運(yùn)算性質(zhì)的應(yīng)用,考查計算能力,屬于中等題.9.B【解析】
由點的坐標(biāo)滿足方程,可得在圓上,由坐標(biāo)滿足方程,可得在圓上,則求出兩圓內(nèi)公切線的斜率,利用數(shù)形結(jié)合可得結(jié)果.【詳解】點的坐標(biāo)滿足方程,在圓上,在坐標(biāo)滿足方程,在圓上,則作出兩圓的圖象如圖,設(shè)兩圓內(nèi)公切線為與,由圖可知,設(shè)兩圓內(nèi)公切線方程為,則,圓心在內(nèi)公切線兩側(cè),,可得,,化為,,即,,的取值范圍,故選B.本題主要考查直線的斜率、直線與圓的位置關(guān)系以及數(shù)形結(jié)合思想的應(yīng)用,屬于綜合題.數(shù)形結(jié)合是根據(jù)數(shù)量與圖形之間的對應(yīng)關(guān)系,通過數(shù)與形的相互轉(zhuǎn)化來解決數(shù)學(xué)問題的一種重要思想方法,尤其在解決選擇題、填空題時發(fā)揮著奇特功效,大大提高了解題能力與速度.運(yùn)用這種方法的關(guān)鍵是運(yùn)用這種方法的關(guān)鍵是正確作出曲線圖象,充分利用數(shù)形結(jié)合的思想方法能夠使問題化難為簡,并迎刃而解.10.C【解析】
設(shè),求,作為的函數(shù),其最小值是6,利用導(dǎo)數(shù)知識求的最小值.【詳解】設(shè),則,記,,易知是增函數(shù),且的值域是,∴的唯一解,且時,,時,,即,由題意,而,,∴,解得,.∴.故選:C.本題考查導(dǎo)數(shù)的應(yīng)用,考查用導(dǎo)數(shù)求最值.解題時對和的關(guān)系的處理是解題關(guān)鍵.11.A【解析】
根據(jù)幾何概率計算公式,求出中間小三角形區(qū)域的面積與大三角形面積的比值即可.【詳解】在中,,,,由余弦定理,得,所以.所以所求概率為.故選A.本題考查了幾何概型的概率計算問題,是基礎(chǔ)題.12.A【解析】
根據(jù)排除,,利用極限思想進(jìn)行排除即可.【詳解】解:函數(shù)的定義域為,恒成立,排除,,當(dāng)時,,當(dāng),,排除,故選:.本題主要考查函數(shù)圖象的識別和判斷,利用函數(shù)值的符號以及極限思想是解決本題的關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由數(shù)量積的運(yùn)算律求得,再由數(shù)量積的定義可得結(jié)論.【詳解】由題意,∴,即,∴.故答案為:.本題考查求向量的夾角,掌握數(shù)量積的定義與運(yùn)算律是解題關(guān)鍵.14.612π﹣9【解析】
過作,交于,先求得圓心角的弧度數(shù),然后解解三角形求得的長.利用扇形面積減去三角形的面積,求得弧田的面積.【詳解】∵如圖,弧田的弧AB長為4π,弧所在的圓的半徑為6,過作,交于,根據(jù)圓的幾何性質(zhì)可知,垂直平分.∴α=∠AOB==,可得∠AOD=,OA=6,∴AB=2AD=2OAsin=2×=6,∴弧田的面積S=S扇形OAB﹣S△OAB=4π×6﹣=12π﹣9.故答案為:6,12π﹣9.本小題主要考查弓形弦長和弓形面積的計算,考查中國古代數(shù)學(xué)文化,屬于中檔題.15.【解析】
先求出隨機(jī)抽取a,b的所有事件數(shù),再求出滿足的事件數(shù),根據(jù)古典概型公式求出結(jié)果.【詳解】解:從集合中隨機(jī)取一個元素,記為,從集合中隨機(jī)取一個元素,記為,則的事件數(shù)為9個,即為,,,其中滿足的有,,,共有8個,故的概率為.本題考查了古典概型的計算,解題的關(guān)鍵是準(zhǔn)確列舉出所有事件數(shù).16.【解析】
由已知,在上有3個根,分,,,四種情況討論的單調(diào)性、最值即可得到答案.【詳解】由已知,的周期為4,且至多在上有4個根,而含505個周期,所以在上有3個根,設(shè),,易知在上單調(diào)遞減,在,上單調(diào)遞增,又,.若時,在上無根,在必有3個根,則,即,此時;若時,在上有1個根,注意到,此時在不可能有2個根,故不滿足;若時,要使在有2個根,只需,解得;若時,在上單調(diào)遞增,最多只有1個零點,不滿足題意;綜上,實數(shù)的范圍為.故答案為:本題考查利用導(dǎo)數(shù)研究函數(shù)的零點個數(shù)問題,涉及到函數(shù)的周期性、分類討論函數(shù)的零點,是一道中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)43,47;(2)分布列見解析,.【解析】
(1)根據(jù)莖葉圖即可得到中位數(shù)和眾數(shù);(2)根據(jù)數(shù)據(jù)可得任取一名優(yōu)秀員工的概率為,故,寫出分布列即可得解.【詳解】(1)中位數(shù)為,眾數(shù)為.(2)被調(diào)查的名工人中優(yōu)秀員工的數(shù)量,任取一名優(yōu)秀員工的概率為,故,,,的分布列如下:故此題考查根據(jù)莖葉圖求眾數(shù)和中位數(shù),求離散型隨機(jī)變量分布列,根據(jù)分布列求解期望,關(guān)鍵在于準(zhǔn)確求解概率,若能準(zhǔn)確識別二項分布對于解題能夠起到事半功倍的作用.18.(1)(2)【解析】
(1)為假,則為真,求導(dǎo),利用導(dǎo)函數(shù)研究函數(shù)有零點條件得的取值范圍;(2)由為假,為真,知一真一假;分類討論列不等式組可解.【詳解】(1)依題意,為真,則無解,即無解;令,則,故當(dāng)時,,單調(diào)遞增,當(dāng),,單調(diào)遞減,作出函數(shù)圖象如下所示,觀察可知,,即;(2)若為真,則,解得;由為假,為真,知一真一假;若真假,則實數(shù)滿足,則;若假真,則實數(shù)滿足,無解;綜上所述,實數(shù)的取值范圍為.本題考查根據(jù)全(特)稱命題的真假求參數(shù)的問題.其思路:與全稱命題或特稱命題真假有關(guān)的參數(shù)取值范圍問題的本質(zhì)是恒成立問題或有解問題.解決此類問題時,一般先利用等價轉(zhuǎn)化思想將條件合理轉(zhuǎn)化,得到關(guān)于參數(shù)的方程或不等式(組),再通過解方程或不等式(組)求出參數(shù)的值或范圍.19.(1)..(2)【解析】
(1)先求解a,b,消去參數(shù),即得曲線的直角坐標(biāo)方程;再求解,利用極坐標(biāo)和直角坐標(biāo)的互化公式,即得曲線的直角坐標(biāo)方程;(2)由于,可設(shè),,代入曲線直角坐標(biāo)方程,可得的關(guān)系,轉(zhuǎn)化,可得解.【詳解】(1)將及對應(yīng)的參數(shù),代入得,即,所以曲線的方程為,為參數(shù),所以曲線的直角坐標(biāo)方程為.設(shè)圓的半徑為R,由題意,圓的極坐標(biāo)方程為(或),將點代入,得,即,所以曲線的極坐標(biāo)方程為,所以曲線的直角坐標(biāo)方程為.(2)由于,故可設(shè),代入曲線直角坐標(biāo)方程,可得,,所以.本題考查了極坐標(biāo)和直角坐標(biāo),參數(shù)方程和一般方程的互化以及極坐標(biāo)的幾何意義的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.20.(1);(2)【解析】
(1)利用正弦定理將邊化成角,可得,展開并整理可得,從而可求出角;(2)由余弦定理得,進(jìn)而可得,由,可求出的值,設(shè)邊上的高為,可得的面積為,從而可求出.【詳解】(1)由題意,由正弦定理得.因為,所以,所以,展開得,整理得.因為,所以,故,即.(2)由余弦定理得,則,得,故,故的面積為.設(shè)邊上的高為,有,故,所以邊上的高為.本題考查正弦、余弦定理在解三角形中的應(yīng)用,考查三角形的面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025江蘇勞動合同書范本
- 2025房地產(chǎn)買賣合同
- 2025北京室內(nèi)裝修合同樣本
- 2025設(shè)備抵押擔(dān)保借款合同范本(附抵押合同)
- 2025版權(quán)授權(quán)合同范文
- 2025簡易服裝買賣合同
- 2025商場解除合同協(xié)議書
- 2025茶葉銷售合同
- 2025年電子計算機(jī)配套產(chǎn)品及耗材合作協(xié)議書
- 2025年圓柱型鋅空氣電池項目建議書
- 《中國省會城市介紹》課件
- 電子商務(wù)物流教學(xué)課件
- 排水工程(下)重點
- 聲音與情緒管理
- 直播中控轉(zhuǎn)正述職報告
- 史寧中:義務(wù)教育數(shù)學(xué)課標(biāo)(2022年版)解讀
- 中華人民共和國統(tǒng)計法
- 基于Simulink+DSP代碼生成的永磁電機(jī)控制 課件 第1-4章 DSP各模塊介紹-永磁同步電機(jī)的磁場定向控制技術(shù)
- 中國石油吉林職業(yè)技能鑒定中心鑒定經(jīng)管員操作試題
- 軍事AI模型優(yōu)化
- 第六章-主成分分析法
評論
0/150
提交評論