




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)昭通職業(yè)學(xué)院
《智能技術(shù)概論》2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、人工智能中的專(zhuān)家系統(tǒng)是一種基于知識(shí)的系統(tǒng)。假設(shè)有一個(gè)用于故障診斷的專(zhuān)家系統(tǒng),需要將專(zhuān)家的知識(shí)和經(jīng)驗(yàn)轉(zhuǎn)化為系統(tǒng)的規(guī)則和推理機(jī)制。以下關(guān)于專(zhuān)家系統(tǒng)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.專(zhuān)家系統(tǒng)的性能取決于知識(shí)的準(zhǔn)確性和完整性B.專(zhuān)家系統(tǒng)能夠處理不確定性和模糊性的知識(shí)C.專(zhuān)家系統(tǒng)的開(kāi)發(fā)需要大量的時(shí)間和專(zhuān)業(yè)知識(shí)D.專(zhuān)家系統(tǒng)一旦開(kāi)發(fā)完成,就不需要進(jìn)行更新和維護(hù)2、人工智能中的語(yǔ)音識(shí)別技術(shù)正在改變?nèi)藗兣c計(jì)算機(jī)的交互方式。假設(shè)要開(kāi)發(fā)一個(gè)能夠準(zhǔn)確識(shí)別不同口音和語(yǔ)速的語(yǔ)音識(shí)別系統(tǒng)。以下關(guān)于語(yǔ)音識(shí)別的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.特征提取是語(yǔ)音識(shí)別中的關(guān)鍵步驟,用于將語(yǔ)音信號(hào)轉(zhuǎn)換為可處理的特征向量B.聲學(xué)模型和語(yǔ)言模型共同作用,提高語(yǔ)音識(shí)別的準(zhǔn)確率C.語(yǔ)音識(shí)別系統(tǒng)對(duì)于背景噪音和多人同時(shí)說(shuō)話的場(chǎng)景能夠輕松應(yīng)對(duì),不受任何影響D.不斷增加訓(xùn)練數(shù)據(jù)的多樣性和規(guī)模,可以改善語(yǔ)音識(shí)別系統(tǒng)在復(fù)雜場(chǎng)景下的性能3、人工智能中的深度學(xué)習(xí)模型通常需要大量的計(jì)算資源進(jìn)行訓(xùn)練。假設(shè)一個(gè)研究團(tuán)隊(duì)資源有限。以下關(guān)于在有限資源下訓(xùn)練模型的策略描述,哪一項(xiàng)是不正確的?()A.可以使用數(shù)據(jù)增強(qiáng)技術(shù),通過(guò)對(duì)原始數(shù)據(jù)進(jìn)行隨機(jī)變換來(lái)增加數(shù)據(jù)量B.選擇輕量級(jí)的模型架構(gòu),減少參數(shù)數(shù)量和計(jì)算量C.降低模型的訓(xùn)練精度,如使用低精度數(shù)值表示,以加快訓(xùn)練速度D.為了保證模型性能,無(wú)論資源如何有限,都不能對(duì)模型進(jìn)行任何簡(jiǎn)化和壓縮4、自然語(yǔ)言處理是人工智能的重要應(yīng)用領(lǐng)域之一。假設(shè)我們要開(kāi)發(fā)一個(gè)能夠自動(dòng)回答用戶問(wèn)題的智能客服系統(tǒng),需要對(duì)大量的文本數(shù)據(jù)進(jìn)行學(xué)習(xí)和理解。在這個(gè)過(guò)程中,詞向量模型如Word2Vec和GloVe起到了關(guān)鍵作用。那么,關(guān)于詞向量模型,以下說(shuō)法哪一項(xiàng)是不準(zhǔn)確的?()A.能夠?qū)卧~表示為低維的實(shí)數(shù)向量,捕捉單詞之間的語(yǔ)義關(guān)系B.可以通過(guò)對(duì)大規(guī)模語(yǔ)料庫(kù)的無(wú)監(jiān)督學(xué)習(xí)得到C.不同的詞向量模型在處理多義詞時(shí)效果都很好D.詞向量的計(jì)算可以基于單詞的上下文信息5、人工智能中的異常檢測(cè)在許多領(lǐng)域都有重要應(yīng)用,如網(wǎng)絡(luò)安全、金融欺詐檢測(cè)等。假設(shè)我們要在金融交易數(shù)據(jù)中檢測(cè)異常行為,以下關(guān)于異常檢測(cè)的方法,哪一項(xiàng)是不準(zhǔn)確的?()A.基于統(tǒng)計(jì)模型的方法B.基于聚類(lèi)的方法C.基于規(guī)則的方法D.異常檢測(cè)不需要考慮數(shù)據(jù)的分布特征6、在人工智能的文本分類(lèi)任務(wù)中,假設(shè)要對(duì)大量的新聞文章進(jìn)行分類(lèi),如政治、經(jīng)濟(jì)、體育等。以下關(guān)于特征提取的方法,哪一項(xiàng)是最常用的?()A.使用詞袋模型,將文本表示為詞的頻率向量B.直接將原始文本作為輸入,不進(jìn)行任何特征提取C.運(yùn)用句法分析,提取句子的結(jié)構(gòu)特征D.僅考慮文本的標(biāo)題,忽略正文內(nèi)容7、在人工智能的知識(shí)圖譜構(gòu)建中,需要整合大量的結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)。假設(shè)要為一個(gè)特定領(lǐng)域構(gòu)建知識(shí)圖譜,以下關(guān)于數(shù)據(jù)來(lái)源的選擇,哪一項(xiàng)是最關(guān)鍵的?()A.只選擇權(quán)威的學(xué)術(shù)文獻(xiàn)和研究報(bào)告,確保知識(shí)的準(zhǔn)確性B.廣泛收集互聯(lián)網(wǎng)上的各種信息,包括社交媒體和博客等C.結(jié)合行業(yè)專(zhuān)家的經(jīng)驗(yàn)和知識(shí),以及相關(guān)的數(shù)據(jù)庫(kù)和文檔D.隨機(jī)選擇一些數(shù)據(jù)來(lái)源,不進(jìn)行篩選和評(píng)估8、在人工智能的倫理原則中,公平性是一個(gè)重要的考量因素。假設(shè)我們要開(kāi)發(fā)一個(gè)用于招聘的人工智能系統(tǒng),以下關(guān)于確保公平性的方法,哪一項(xiàng)是不正確的?()A.對(duì)數(shù)據(jù)進(jìn)行預(yù)處理,消除潛在的偏差B.透明公開(kāi)算法的工作原理和決策依據(jù)C.不考慮候選人的背景信息,只根據(jù)能力評(píng)估D.完全依賴人工智能系統(tǒng)的決策,不進(jìn)行人工干預(yù)9、在人工智能的數(shù)據(jù)分析中,假設(shè)要從大量的數(shù)據(jù)中發(fā)現(xiàn)潛在的模式和關(guān)系,以下關(guān)于數(shù)據(jù)分析方法的描述,正確的是:()A.關(guān)聯(lián)規(guī)則挖掘只能發(fā)現(xiàn)簡(jiǎn)單的關(guān)聯(lián)關(guān)系,無(wú)法處理復(fù)雜的數(shù)據(jù)結(jié)構(gòu)B.聚類(lèi)分析可以將數(shù)據(jù)自動(dòng)分為不同的類(lèi)別,但類(lèi)別數(shù)量需要事先指定C.主成分分析能夠降低數(shù)據(jù)的維度,同時(shí)保留主要的信息D.以上數(shù)據(jù)分析方法在實(shí)際應(yīng)用中通常單獨(dú)使用,不需要結(jié)合其他方法10、在人工智能的圖像超分辨率重建任務(wù)中,例如將低分辨率圖像恢復(fù)為高分辨率圖像,以下哪種技術(shù)和網(wǎng)絡(luò)結(jié)構(gòu)可能會(huì)發(fā)揮重要作用?()A.殘差網(wǎng)絡(luò)B.注意力機(jī)制C.對(duì)抗生成網(wǎng)絡(luò)D.以上都是11、在人工智能的情感分析任務(wù)中,假設(shè)要分析一段文本所表達(dá)的情感傾向,以下關(guān)于情感分析方法的描述,正確的是:()A.基于詞典的情感分析方法簡(jiǎn)單直觀,但準(zhǔn)確性較低,容易受到語(yǔ)境影響B(tài).基于機(jī)器學(xué)習(xí)的情感分析方法需要大量的標(biāo)注數(shù)據(jù),且模型訓(xùn)練時(shí)間長(zhǎng)C.深度學(xué)習(xí)的情感分析模型能夠自動(dòng)學(xué)習(xí)文本的特征,無(wú)需人工設(shè)計(jì)特征D.以上方法在情感分析任務(wù)中都有各自的優(yōu)勢(shì)和局限性12、深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像分類(lèi)等任務(wù)中取得了顯著成果。假設(shè)要使用CNN對(duì)大量的動(dòng)物圖片進(jìn)行分類(lèi)。以下關(guān)于卷積神經(jīng)網(wǎng)絡(luò)的描述,哪一項(xiàng)是不正確的?()A.卷積層通過(guò)卷積操作提取圖像的局部特征B.池化層用于減少特征圖的尺寸,降低計(jì)算量,同時(shí)保留主要特征C.隨著網(wǎng)絡(luò)層數(shù)的增加,CNN的性能一定會(huì)不斷提高D.可以通過(guò)調(diào)整卷積核的大小、數(shù)量和網(wǎng)絡(luò)結(jié)構(gòu)來(lái)優(yōu)化CNN的性能13、在人工智能的發(fā)展中,模型壓縮和優(yōu)化技術(shù)有助于在資源受限的設(shè)備上部署模型。假設(shè)要將一個(gè)大型的人工智能模型部署到移動(dòng)設(shè)備上,以下關(guān)于模型壓縮和優(yōu)化的描述,哪一項(xiàng)是不正確的?()A.可以采用剪枝、量化等方法減少模型的參數(shù)數(shù)量和計(jì)算量B.模型壓縮可能會(huì)導(dǎo)致一定程度的性能損失,但可以通過(guò)優(yōu)化算法來(lái)彌補(bǔ)C.模型壓縮和優(yōu)化只適用于深度學(xué)習(xí)模型,對(duì)傳統(tǒng)機(jī)器學(xué)習(xí)模型無(wú)效D.需要在模型性能和資源消耗之間進(jìn)行平衡,找到最優(yōu)的解決方案14、在人工智能的倫理原則中,“公平性”是一個(gè)重要的考量因素。假設(shè)一個(gè)人工智能招聘系統(tǒng)對(duì)不同性別、種族的候選人給出了不同的評(píng)價(jià)結(jié)果。以下關(guān)于解決這種公平性問(wèn)題的方法,哪一項(xiàng)是不正確的?()A.對(duì)數(shù)據(jù)進(jìn)行預(yù)處理,消除可能導(dǎo)致偏差的因素B.定期審查和更新模型,以確保其公平性C.故意引入偏差,以平衡不同群體之間的差異D.建立公平性評(píng)估指標(biāo),對(duì)模型進(jìn)行監(jiān)測(cè)和改進(jìn)15、在人工智能的圖像生成任務(wù)中,變分自編碼器(VAE)是一種常用的模型。假設(shè)要使用VAE生成新的圖像,以下關(guān)于VAE的描述,正確的是:()A.VAE通過(guò)學(xué)習(xí)數(shù)據(jù)的潛在分布來(lái)生成新的圖像,生成的圖像與原始數(shù)據(jù)完全相同B.VAE生成的圖像質(zhì)量不如生成對(duì)抗網(wǎng)絡(luò)(GAN),因此在實(shí)際應(yīng)用中逐漸被淘汰C.VAE可以在生成圖像的同時(shí)對(duì)圖像進(jìn)行壓縮和編碼,節(jié)省存儲(chǔ)空間D.VAE只能用于生成簡(jiǎn)單的圖像,如數(shù)字和幾何圖形,無(wú)法生成復(fù)雜的自然圖像二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)簡(jiǎn)述語(yǔ)義理解在自然語(yǔ)言處理中的難點(diǎn)。2、(本題5分)解釋金融領(lǐng)域中人工智能的作用。3、(本題5分)說(shuō)明人工智能在消費(fèi)者行為分析和市場(chǎng)細(xì)分中的方法。4、(本題5分)解釋人工智能的主要研究領(lǐng)域。三、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)在PyTorch中,構(gòu)建一個(gè)基于Transformer架構(gòu)的語(yǔ)言翻譯模型,將一種語(yǔ)言翻譯成另一種語(yǔ)言。使用大規(guī)模的平行語(yǔ)料庫(kù)進(jìn)行訓(xùn)練,評(píng)估翻譯的準(zhǔn)確性和流暢性,并與傳統(tǒng)的機(jī)器翻譯方法進(jìn)行比較。2、(本題5分)利用Python中的TensorFlow框架,構(gòu)建一個(gè)深度強(qiáng)化學(xué)習(xí)模型,讓智能體在一個(gè)簡(jiǎn)單的環(huán)境中學(xué)習(xí)最優(yōu)的行動(dòng)策略。設(shè)置合適的獎(jiǎng)勵(lì)機(jī)制和環(huán)境參數(shù),訓(xùn)練模型并觀察智能體的學(xué)習(xí)效果。3、(本題5分)利用Python的TensorFlow庫(kù),構(gòu)建一個(gè)自監(jiān)督學(xué)習(xí)模型,用于圖像特征提取,通過(guò)下游任務(wù)評(píng)估特征的有效性。4、(本題5分)使用機(jī)器學(xué)習(xí)算法對(duì)氣象數(shù)據(jù)進(jìn)行分析,預(yù)測(cè)氣候變化的趨勢(shì)和影響,為應(yīng)對(duì)氣候變化提供決策支持。5、(本題5分)基于Python的Scikit-learn庫(kù),運(yùn)用IsolationForest算法對(duì)一個(gè)工業(yè)生產(chǎn)數(shù)據(jù)集進(jìn)行異常值檢測(cè)。通過(guò)對(duì)比不同的異常檢測(cè)算法,確定最適合該數(shù)據(jù)集的方法。四、案例分析題(本大題共4個(gè)小題,共40分)1、
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 城投公司債務(wù)管理制度
- 培訓(xùn)機(jī)構(gòu)兼職管理制度
- 公司公車(chē)出差管理制度
- 客戶合作安全管理制度
- 學(xué)校紅碼黃碼管理制度
- 外來(lái)器械追溯管理制度
- 培訓(xùn)室會(huì)議室管理制度
- 入局機(jī)械設(shè)備管理制度
- 客服工作考核管理制度
- 出租重點(diǎn)區(qū)域管理制度
- 數(shù)字化電力系統(tǒng)轉(zhuǎn)型-洞察闡釋
- 2025中國(guó)甲烷大會(huì):2024-2025全球甲烷控排進(jìn)展報(bào)告
- 小學(xué)四年級(jí)下冊(cè)語(yǔ)文期末考試試卷含答案共6套
- 2025各個(gè)班組安全培訓(xùn)考試試題含答案可下載
- 術(shù)后急性疼痛及個(gè)體化鎮(zhèn)痛
- 藥物動(dòng)力學(xué)與臨床相關(guān)考點(diǎn)試題及答案
- 動(dòng)態(tài)設(shè)計(jì)寶典C4D三維圖像設(shè)計(jì)與交互知到智慧樹(shù)期末考試答案題庫(kù)2025年青島工學(xué)院
- 幼兒園畢業(yè)典禮流程安排
- 2024年公安機(jī)關(guān)理論考試題庫(kù)500道附參考答案【基礎(chǔ)題】
- 施工現(xiàn)場(chǎng)人員的安全意識(shí)提升試題及答案
- 血管內(nèi)導(dǎo)管相關(guān)性血流感染預(yù)防與診治指南(2025)解讀
評(píng)論
0/150
提交評(píng)論