




已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué) 人教版 高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座13)直線、圓的方程一課標(biāo)要求:1直線與方程(1)在平面直角坐標(biāo)系中,結(jié)合具體圖形,探索確定直線位置的幾何要素;(2)理解直線的傾斜角和斜率的概念,經(jīng)歷用代數(shù)方法刻畫直線斜率的過程,掌握過兩點(diǎn)的直線斜率的計(jì)算公式;(3)根據(jù)確定直線位置的幾何要素,探索并掌握直線方程的幾種形式(點(diǎn)斜式、兩點(diǎn)式及一般式),體會(huì)斜截式與一次函數(shù)的關(guān)系;2圓與方程回顧確定圓的幾何要素,在平面直角坐標(biāo)系中,探索并掌握?qǐng)A的標(biāo)準(zhǔn)方程與一般方程。二命題走向直線方程考察的重點(diǎn)是直線方程的特征值(主要是直線的斜率、截距)有關(guān)問題,可與三角知識(shí)聯(lián)系;圓的方程,從軌跡角度講,可以成為解答題,尤其是參數(shù)問題,在對(duì)參數(shù)的討論中確定圓的方程。預(yù)測(cè)2007年對(duì)本講的考察是:(1)2道選擇或填空,解答題多與其他知識(shí)聯(lián)合考察,本講對(duì)于數(shù)形結(jié)合思想的考察也會(huì)是一個(gè)出題方向;(2)熱點(diǎn)問題是直線的傾斜角和斜率、直線的幾種方程形式和求圓的方程。三要點(diǎn)精講1傾斜角:一條直線L向上的方向與X軸的正方向所成的最小正角,叫做直線的傾斜角,范圍為。2斜率:當(dāng)直線的傾斜角不是900時(shí),則稱其正切值為該直線的斜率,即k=tan;當(dāng)直線的傾斜角等于900時(shí),直線的斜率不存在。過兩點(diǎn)p1(x1,y1),p2(x2,y2)(x1x2)的直線的斜率公式:k=tan(若x1x2,則直線p1p2的斜率不存在,此時(shí)直線的傾斜角為900)。4直線方程的五種形式確定直線方程需要有兩個(gè)互相獨(dú)立的條件。確定直線方程的形式很多,但必須注意各種形式的直線方程的適用范圍。名稱方程說明適用條件斜截式y(tǒng)=kx+bk斜率b縱截距傾斜角為90的直線不能用此式點(diǎn)斜式y(tǒng)-y0=k(x-x0)(x0,y0)直線上已知點(diǎn),k斜率傾斜角為90的直線不能用此式兩點(diǎn)式=(x1,y1),(x2,y2)是直線上兩個(gè)已知點(diǎn)與兩坐標(biāo)軸平行的直線不能用此式截距式+=1a直線的橫截距b直線的縱截距過(0,0)及與兩坐標(biāo)軸平行的直線不能用此式一般式Ax+By+C=0,分別為斜率、橫截距和縱截距A、B不能同時(shí)為零直線的點(diǎn)斜式與斜截式不能表示斜率不存在(垂直于x 軸)的直線;兩點(diǎn)式不能表示平行或重合兩坐標(biāo)軸的直線;截距式不能表示平行或重合兩坐標(biāo)軸的直線及過原點(diǎn)的直線。5圓的方程圓心為,半徑為r的圓的標(biāo)準(zhǔn)方程為:。特殊地,當(dāng)時(shí),圓心在原點(diǎn)的圓的方程為:。圓的一般方程,圓心為點(diǎn),半徑,其中。二元二次方程,表示圓的方程的充要條件是:、項(xiàng)項(xiàng)的系數(shù)相同且不為0,即;、沒有xy項(xiàng),即B=0;、。四典例解析圖題型1:直線的傾斜角例1(1995全國,5)圖中的直線l1、l2、l3的斜率分別為k1、k2、k3,則( )Ak1k2k3Bk3k1k2Ck3k2k1Dk1k3k2答案:D解析:直線l1的傾斜角1是鈍角,故k10,直線l2與l3的傾斜角2、3均為銳角,且23,所以k2k30,因此k2k3k1,故應(yīng)選D。點(diǎn)評(píng):本題重點(diǎn)考查直線的傾斜角、斜率的關(guān)系,考查數(shù)形結(jié)合的能力。例2過點(diǎn)P(2,1)作直線分別交x軸、y軸的正半軸于A、B兩點(diǎn),求的值最小時(shí)直線的方程。 解析:依題意作圖,設(shè)BAO, 則, , 當(dāng),即時(shí)的值最小,此時(shí)直線的傾斜角為135, 斜率。故直線的方程為,即。點(diǎn)評(píng):求直線方程是解析幾何的基礎(chǔ),也是重要的題型。解這類題除用到有關(guān)概念和直線方程的五種形式外,還要用到一些技巧。題型2:斜率公式及應(yīng)用例3(1)(05年江西高考)設(shè)實(shí)數(shù)x,y滿足,則的最大值是_。(2)(1997全國文,24)已知過原點(diǎn)O的一條直線與函數(shù)y=log8x的圖象交于A、B兩點(diǎn),分別過點(diǎn)A、B作y軸的平行線與函數(shù)ylog2x的圖象交于C、D兩點(diǎn)。(1)證明點(diǎn)C、D和原點(diǎn)O在同一條直線上。(2)當(dāng)BC平行于x軸時(shí),求點(diǎn)A的坐標(biāo)。解析:(1)如圖,實(shí)數(shù)x,y滿足的區(qū)域?yàn)閳D中陰影部分(包括邊界),而表示點(diǎn)(x,y)與原點(diǎn)連線的斜率,則直線AO的斜率最大,其中A點(diǎn)坐標(biāo)為,此時(shí),所以的最大值是。 點(diǎn)評(píng):本題還可以設(shè),則,斜率k的最大值即為的最大值,但求解頗費(fèi)周折。(2)證明:設(shè)A、B的橫坐標(biāo)分別為x1,x2,由題設(shè)知x11,x21,點(diǎn)A(x1,log8x1),B(x2,log8x2).因?yàn)锳、B在過點(diǎn)O的直線上,所以,又點(diǎn)C、D的坐標(biāo)分別為(x1,log2x1),(x2,log2x2)由于log2x13log8x1,log2x23log8x2,所以O(shè)C的斜率和OD的斜率分別為。由此得kOCkOD,即O、C、D在同一條直線上。由BC平行于x軸,有l(wèi)og2x1log8x2,解得 x2x13將其代入,得x13log8x13x1log8x1.由于x11,知log8x10,故x133x1,x1,于是點(diǎn)A的坐標(biāo)為(,log8).點(diǎn)評(píng):本小題主要考查對(duì)數(shù)函數(shù)圖象、對(duì)數(shù)換底公式、對(duì)數(shù)方程、指數(shù)方程等基礎(chǔ)知識(shí),考查運(yùn)算能力和分析問題的能力。例4(05年全國高考)當(dāng)時(shí),函數(shù)的最小值是( )A2 B C4 D解析:原式化簡(jiǎn)為,則y看作點(diǎn)A(0,5)與點(diǎn)的連線的斜率。因?yàn)辄c(diǎn)B的軌跡是即過A作直線,代入上式,由相切(0)可求出,由圖象知k的最小值是4,故選C。點(diǎn)評(píng):也可用三角函數(shù)公式變換求最值或用求導(dǎo)的方法求最值等。但將問題轉(zhuǎn)化為直線與橢圓的位置關(guān)系使問題解決的十分準(zhǔn)確與清晰。題型3:直線方程例5已知直線的點(diǎn)斜式方程為,求該直線另外三種特殊形式的方程。 解析:(1)將移項(xiàng)、展開括號(hào)后合并,即得斜截式方程。 (2)因?yàn)辄c(diǎn)(2,1)、(0,)均滿足方程,故它們?yōu)橹本€上的兩點(diǎn)。 由兩點(diǎn)式方程得: 即 (3)由知:直線在y軸上的截距 又令,得 故直線的截距式方程點(diǎn)評(píng):直線方程的四種特殊形式之間存在著內(nèi)在的聯(lián)系,它是直線在不同條件下的不同表現(xiàn)形式,要掌握好它們之間的互化。在解具體問題時(shí),要根據(jù)問題的條件、結(jié)論,靈活恰當(dāng)?shù)剡x用公式,使問題解得簡(jiǎn)捷、明了。例6直線經(jīng)過點(diǎn)P(-5,-4),且與兩坐標(biāo)軸圍成的三角形面積為5,求直線的方程。 解析:設(shè)所求直線的方程為, 直線過點(diǎn)P(-5,-4),即。 又由已知有,即, 解方程組,得:或 故所求直線的方程為:,或。 即,或 點(diǎn)評(píng):要求的方程,須先求截距a、b的值,而求截距的方法也有三種: (1)從點(diǎn)的坐標(biāo)或中直接觀察出來; (2)由斜截式或截距式方程確定截距;(3)在其他形式的直線方程中,令得軸上的截距b;令得出x軸上的截距a??傊?,在求直線方程時(shí),設(shè)計(jì)合理的運(yùn)算途徑比訓(xùn)練提高運(yùn)算能力更為重要。解題時(shí)善于觀察,勤于思考,常常能起到事半功倍的效果。題型3:直線方程綜合問題例5(2003北京春理,12)在直角坐標(biāo)系xOy中,已知AOB三邊所在直線的方程分別為x=0,y=0,2x+3y=30,則AOB內(nèi)部和邊上整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn))的總數(shù)是( )A95 B91 C88 D75答案:B解析一:由y=10x(0x15,xN)轉(zhuǎn)化為求滿足不等式y(tǒng)10x(0x15,xN)所有整數(shù)y的值.然后再求其總數(shù).令x=0,y有11個(gè)整數(shù),x=1,y有10個(gè),x=2或x=3時(shí),y分別有9個(gè),x=4時(shí),y有8個(gè),x=5或6時(shí),y分別有7個(gè),類推:x=13時(shí)y有2個(gè),x=14或15時(shí),y分別有1個(gè),共91個(gè)整點(diǎn).故選B。圖解析二:將x=0,y=0和2x+3y=30所圍成的三角形補(bǔ)成一個(gè)矩形.如圖所示。對(duì)角線上共有6個(gè)整點(diǎn),矩形中(包括邊界)共有1611=176.因此所求AOB內(nèi)部和邊上的整點(diǎn)共有=91(個(gè))點(diǎn)評(píng):本題較好地考查了考生的數(shù)學(xué)素質(zhì),尤其是考查了思維的敏捷性與清晰的頭腦,通過不等式解等知識(shí)探索解題途徑。例6(2003京春理,22)已知?jiǎng)訄A過定點(diǎn)P(1,0),且與定直線l:x=1相切,點(diǎn)C在l上。()求動(dòng)圓圓心的軌跡M的方程;()設(shè)過點(diǎn)P,且斜率為的直線與曲線M相交于A、B兩點(diǎn)。(i)問:ABC能否為正三角形?若能,求點(diǎn)C的坐標(biāo);若不能,說明理由;(ii)當(dāng)ABC為鈍角三角形時(shí),求這種點(diǎn)C的縱坐標(biāo)的取值范圍。()解法一,依題意,曲線M是以點(diǎn)P為焦點(diǎn),直線l為準(zhǔn)線的拋物線,所以曲線M的方程為y2=4x.圖解法二:設(shè)M(x,y),依題意有|MP|=|MN|,所以|x+1|=?;?jiǎn)得:y2=4x。()(i)由題意得,直線AB的方程為y=(x1).由消y得3x210x+3=0,解得x1=,x2=3。所以A點(diǎn)坐標(biāo)為(),B點(diǎn)坐標(biāo)為(3,2),|AB|=x1+x2+2=。假設(shè)存在點(diǎn)C(1,y),使ABC為正三角形,則|BC|=|AB|且|AC|=|AB|,即由得42+(y+2)2=()2+(y)2,解得y=。但y=不符合,所以由,組成的方程組無解。因此,直線l上不存在點(diǎn)C,使得ABC是正三角形。(ii)解法一:設(shè)C(1,y)使ABC成鈍角三角形,由得y=2,即當(dāng)點(diǎn)C的坐標(biāo)為(1,2)時(shí),A、B、C三點(diǎn)共線,故y2。又|AC|2=(1)2+(y)2=+y2,|BC|2=(3+1)2+(y+2)2=28+4y+y2,|AB|2=()2=。當(dāng)CAB為鈍角時(shí),cosA=|AC|2+|AB|2,即,即y時(shí),CAB為鈍角。當(dāng)|AC|2|BC|2+|AB|2,即,即y|AC|2+|BC|2,即,即。該不等式無解,所以ACB不可能為鈍角。因此,當(dāng)ABC為鈍角三角形時(shí),點(diǎn)C的縱坐標(biāo)y的取值范圍是。解法二:以AB為直徑的圓的方程為(x)2+(y+)2=()2。圓心()到直線l:x=1的距離為,所以,以AB為直徑的圓與直線l相切于點(diǎn)G(1,)。當(dāng)直線l上的C點(diǎn)與G重合時(shí),ACB為直角,當(dāng)C與G點(diǎn)不重合,且A、B、C三點(diǎn)不共線時(shí),ACB為銳角,即ABC中,ACB不可能是鈍角。因此,要使ABC為鈍角三角形,只可能是CAB或CBA為鈍角。過點(diǎn)A且與AB垂直的直線方程為。令x=1得y=。過點(diǎn)B且與AB垂直的直線方程為y+2(x3)。令x=1得y=。又由解得y=2,所以,當(dāng)點(diǎn)C的坐標(biāo)為(1,2)時(shí),A、B、C三點(diǎn)共線,不構(gòu)成三角形。因此,當(dāng)ABC為鈍角三角形時(shí),點(diǎn)C的縱坐標(biāo)y的取值范圍是y(y2)。點(diǎn)評(píng):該題全面綜合了解析幾何、平面幾何、代數(shù)的相關(guān)知識(shí),充分體現(xiàn)了“注重學(xué)科知識(shí)的內(nèi)在聯(lián)系”.題目的設(shè)計(jì)新穎脫俗,能較好地考查考生綜合運(yùn)用數(shù)學(xué)知識(shí)解決問題的能力。比較深刻地考查了解析法的原理和應(yīng)用,以及分類討論的思想、方程的思想.該題對(duì)思維的目的性、邏輯性、周密性、靈活性都進(jìn)行了不同程度的考查.對(duì)運(yùn)算、化簡(jiǎn)能力要求也較高,有較好的區(qū)分度。題型4:圓的方程例7(1)已知ABC的三個(gè)項(xiàng)點(diǎn)坐標(biāo)分別是A(4,1),B(6,3),C(3,0),求ABC外接圓的方程。 分析:如果設(shè)圓的標(biāo)準(zhǔn)方程,將三個(gè)頂點(diǎn)坐標(biāo)分別代入,即可確定出三個(gè)獨(dú)立參數(shù)a,b,r,寫出圓的標(biāo)準(zhǔn)方程;如果注意到ABC外接圓的圓心是ABC三邊垂直平分線的交點(diǎn),由此可求圓心坐標(biāo)和半徑,也可以寫出圓的標(biāo)準(zhǔn)方程。解法一:設(shè)所求圓的方程是因?yàn)锳(4,1),B(6,3),C(3,0)都在圓上,所以它們的坐標(biāo)都滿足方程,于是 可解得所以ABC的外接圓的方程是。解法二:因?yàn)锳BC外接圓的圓心既在AB的垂直平分線上,也在BC的垂直平分線上,所以先求AB、BC的垂直平分線方程,求得的交點(diǎn)坐標(biāo)就是圓心坐標(biāo)。,線段AB的中點(diǎn)為(5,1),線段BC的中點(diǎn)為,圖41AB的垂直平分線方程為,BC的垂直平分線方程解由聯(lián)立的方程組可得 ABC外接圓的圓心為(1,3),半徑。故ABC外接圓的方程是點(diǎn)評(píng):解法一用的是“待定系數(shù)法”,解法二利用了圓的幾何性質(zhì)。(2)求過A(4,1),B(6,3),C(3,0)三點(diǎn)的圓的方程,并求這個(gè)圓的半徑長和圓心坐標(biāo)。分析:細(xì)心的同學(xué)已經(jīng)發(fā)現(xiàn),本題與上節(jié)例1是相同的,在那里我們用了兩種方法求圓的方程現(xiàn)在再嘗試用圓的一般方程求解(解法三),可以比較一下哪種方法簡(jiǎn)捷。解析:設(shè)圓的方程為因?yàn)槿c(diǎn)A(4,1),B(6,3),C(3,0)都在圓上,所以它們的坐標(biāo)都是方程的解,將它們的坐標(biāo)分別代入方程,得到關(guān)于D,E,F(xiàn)的一個(gè)三元一次方程組: ,解得。所以,圓的方程是。圓心是坐標(biāo)(1,3),半徑為。點(diǎn)評(píng):“待定系數(shù)法”是求圓的方程的常用方法一般地,在選用圓的方程形式時(shí),若問題涉及圓心和半徑,則選用標(biāo)準(zhǔn)方程比較方便,否則選用一般方程方便些。例8若方程。 (1)當(dāng)且僅當(dāng)在什么范圍內(nèi),該方程表示一個(gè)圓。 (2)當(dāng)在以上范圍內(nèi)變化時(shí),求圓心的軌跡方程。 解析:(1)由, , 當(dāng)且僅當(dāng)時(shí), 即時(shí),給定的方程表示一個(gè)圓。 (2)設(shè)圓心坐標(biāo)為,則(為參數(shù))。消去參數(shù),為所求圓心軌跡方程。點(diǎn)評(píng):圓的一般方程,圓心為點(diǎn),半徑,其中。題型5:圓的綜合問題例9如圖2,在平面直角坐標(biāo)系中,給定y軸正半軸上兩點(diǎn)A(0,a),B(0,b)(),試在x軸正半軸上求一點(diǎn)C,使ACB取得最大值。解析:設(shè)C是x軸正半軸上一點(diǎn),在ABC中由正弦定理,有。其中R是ABC的外接圓的半徑??梢姡?dāng)R取得最小值時(shí),ACB取得最大值。在過A、B兩定點(diǎn)且與x軸正向有交點(diǎn)C的諸圓中,當(dāng)且僅當(dāng)點(diǎn)C是圓與x軸的切點(diǎn)時(shí),半徑最小。故切點(diǎn)C即為所求。由切割線定理,得:所以 ,即點(diǎn)C的坐標(biāo)為時(shí),ACB取得最大值。點(diǎn)評(píng):圓是最簡(jiǎn)單的二次曲線,它在解析幾何及其它數(shù)學(xué)分支中都有廣泛的應(yīng)用。對(duì)一些數(shù)學(xué)問題,若能作一個(gè)輔助圓,可以溝通題設(shè)與結(jié)論之間的關(guān)系,從而使問題得解,起到鋪路搭橋的作用。例10已知O過定點(diǎn)A(0,p)(p0),圓心O在拋物線x2=2py上運(yùn)動(dòng),MN為圓O截x軸所得的弦,令|AM|=d1,|AN|=d2,MAN=。(1)當(dāng)O點(diǎn)運(yùn)動(dòng)時(shí),|MN|是否有變化?并證明你的結(jié)論;(2)求+的最大值,并求取得最大值的值。解析:設(shè)O(x0,y0),則x02=2py0 (y00),O的半徑|OA|=,O的方程為(x-x0)2+(y-y0)2=x02+(y0-p)2。令y=0,并把x02=2py0代入得x22x0x+x02p2=0,解得xM=x0 p,xN=x0+p,|MN|=| xN xM|=2p為定值。(2)M(x0-p,0) ,N(x0+p,0) d1=,d2=,則d12+d22=4p2+2x02,d1d2=,+=2=22=2。當(dāng)且僅當(dāng)x02=2p2,即x=p,y0=p時(shí)等號(hào)成立,+的最大值為2。此時(shí)|OB|=|MB|=|NB|(B為MN中點(diǎn)),又OM=ON,OMN為等腰直角三角形,MON=90,則=MON=45。點(diǎn)評(píng):數(shù)形結(jié)合既是數(shù)學(xué)學(xué)科的重要思想,又是數(shù)學(xué)研究的常用方法。五思維總結(jié)抓好“三基”,把握重點(diǎn),重視低、中檔題的復(fù)習(xí),確保選擇題的成功率。本講所涉及到的知識(shí)都是平面解析幾何中最基礎(chǔ)的內(nèi)容.它們滲透到平面解析幾何的各個(gè)部分,正是它們構(gòu)成了解析幾何問題的基礎(chǔ),又是解決這些問題的重要工具之一.這就要求我們必須重視對(duì)“三基”的學(xué)習(xí)和掌握,重視基礎(chǔ)知識(shí)之間的內(nèi)在聯(lián)系,注意基本方法的相互配合,注意平面幾何知識(shí)在解析幾何中的應(yīng)用,注重挖掘基礎(chǔ)知識(shí)的能力因素,提高通性通法的熟練程度,著眼于低、中檔題的順利解決。在解答有關(guān)直線的問題時(shí),應(yīng)特別注意的幾個(gè)方面:(1)在確定直線的斜率、傾斜角時(shí),首先要注意斜率存在的條件,其次要注意傾角的范圍;(2)在利用直線的截距式解題時(shí),要注意防止由于“零截距”造成丟解的情況.如題目條件中出現(xiàn)直線在兩坐標(biāo)軸上的“截距相等”“截距互為相反數(shù)”“在一坐標(biāo)軸上的截距是另一坐標(biāo)軸上的截距的m倍(m0)”等時(shí),采用截距式就會(huì)出現(xiàn)“零截距”,從而丟解.此時(shí)最好采用點(diǎn)斜式或斜截式求解;(3)在利用直線的點(diǎn)斜式、斜截式解題時(shí),要注意防止由于“無斜率”,從而造成丟解.如在求過圓外一點(diǎn)的圓的切線方程時(shí)或討論直線與圓錐曲線的位置關(guān)系時(shí),或討論兩直線的平行、垂直的位置關(guān)系時(shí),一般要分直線有無斜率兩種情況進(jìn)行討論;(4)首先將幾何問題代數(shù)化,用代數(shù)的語言描述幾何要素及其關(guān)系,進(jìn)而將幾何問題轉(zhuǎn)化為代數(shù)問題;處理代數(shù)問題;分析代數(shù)結(jié)果的幾何含義,最終解決幾何問題。這種思想應(yīng)貫穿平面解析幾何教學(xué)的始終。普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué) 人教版 高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座12)空間中的夾角和距離一課標(biāo)要求:1掌握兩條直線所成的角和距離的概念及等角定理;(對(duì)于異面直線的距離,只要求會(huì)計(jì)算已給出公垂線時(shí)的距離)。2掌握點(diǎn)、直線到平面的距離,直線和平面所成的角;3掌握平行平面間的距離,會(huì)求二面角及其平面角;二命題走向高考立體幾何試題一般共有4道(選擇、填空題3道, 解答題1道), 共計(jì)總分27分左右,考查的知識(shí)點(diǎn)在20個(gè)以內(nèi)。隨著新的課程改革的進(jìn)一步實(shí)施,立體幾何考題正朝著“多一點(diǎn)思考,少一點(diǎn)計(jì)算”的發(fā)展,從歷年的考題變化看, 以多面體和旋轉(zhuǎn)體為載體的線面位置關(guān)系的論證,角與距離的探求是??汲P碌臒衢T話題。預(yù)測(cè)07年高考試題:(1)單獨(dú)求夾角和距離的題目多為選擇題、填空題,分值大約5分左右;解答題中的分步設(shè)問中一定有求夾角、距離的問題,分值為6分左右;(2)選擇、填空題考核立幾中的計(jì)算型問題, 而解答題著重考查立幾中的邏輯推理型問題, 當(dāng)然, 二者均應(yīng)以正確的空間想象為前提。三要點(diǎn)精講1距離空間中的距離是立體幾何的重要內(nèi)容,其內(nèi)容主要包括:點(diǎn)點(diǎn)距,點(diǎn)線距,點(diǎn)面距,線線距,線面距,面面距。其中重點(diǎn)是點(diǎn)點(diǎn)距、點(diǎn)線距、點(diǎn)面距以及兩異面直線間的距離因此,掌握點(diǎn)、線、面之間距離的概念,理解距離的垂直性和最近性,理解距離都指相應(yīng)線段的長度,懂得幾種距離之間的轉(zhuǎn)化關(guān)系,所有這些都是十分重要的。求距離的重點(diǎn)在點(diǎn)到平面的距離,直線到平面的距離和兩個(gè)平面的距離可以轉(zhuǎn)化成點(diǎn)到平面的距離,一個(gè)點(diǎn)到平面的距離也可以轉(zhuǎn)化成另外一個(gè)點(diǎn)到這個(gè)平面的距離。(1)兩條異面直線的距離兩條異面直線的公垂線在這兩條異面直線間的線段的長度,叫做兩條異面直線的距離;求法:如果知道兩條異面直線的公垂線,那么就轉(zhuǎn)化成求公垂線段的長度。(2)點(diǎn)到平面的距離平面外一點(diǎn)P 在該平面上的射影為P,則線段PP的長度就是點(diǎn)到平面的距離;求法:“一找二證三求”,三步都必須要清楚地寫出來。等體積法。(3)直線與平面的距離:一條直線和一個(gè)平面平行,這條直線上任意一點(diǎn)到平面的距離,叫做這條直線和平面的距離;(4)平行平面間的距離:兩個(gè)平行平面的公垂線段的長度,叫做兩個(gè)平行平面的距離。求距離的一般方法和步驟:應(yīng)用各種距離之間的轉(zhuǎn)化關(guān)系和“平行移動(dòng)”的思想方法,把所求的距離轉(zhuǎn)化為點(diǎn)點(diǎn)距、點(diǎn)線距或點(diǎn)面距求之,其一般步驟是:找出或作出表示有關(guān)距離的線段;證明它符合定義;歸到解某個(gè)三角形若表示距離的線段不容易找出或作出,可用體積等積法計(jì)算求之。異面直線上兩點(diǎn)間距離公式,如果兩條異面直線a 、b 所成的角為q ,它們的公垂線AA的長度為d ,在a 上有線段AE m ,b 上有線段AF n ,那么EF (“”符號(hào)由實(shí)際情況選定)2夾角空間中的各種角包括異面直線所成的角,直線與平面所成的角和二面角,要理解各種角的概念定義和取值范圍,其范圍依次為0,90、0,90和0,180。(1)兩條異面直線所成的角求法:先通過其中一條直線或者兩條直線的平移,找出這兩條異面直線所成的角,然后通過解三角形去求得;通過兩條異面直線的方向量所成的角來求得,但是注意到異面直線所成角得范圍是,向量所成的角范圍是,如果求出的是鈍角,要注意轉(zhuǎn)化成相應(yīng)的銳角。(2)直線和平面所成的角求法:“一找二證三求”,三步都必須要清楚地寫出來。除特殊位置外,主要是指平面的斜線與平面所成的角,根據(jù)定義采用“射影轉(zhuǎn)化法”。(3)二面角的度量是通過其平面角來實(shí)現(xiàn)的解決二面角的問題往往是從作出其平面角的圖形入手,所以作二面角的平面角就成為解題的關(guān)鍵。通常的作法有:()定義法;()利用三垂線定理或逆定理;()自空間一點(diǎn)作棱垂直的垂面,截二面角得兩條射線所成的角,俗稱垂面法此外,當(dāng)作二面角的平面角有困難時(shí),可用射影面積法解之,cos q ,其中S 為斜面面積,S為射影面積,q 為斜面與射影面所成的二面角。3等角定理如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,并且方向相同,那么這兩個(gè)角相等。推論:如果兩條相交直線和另兩條相交直線分別平行,那么這兩組直線所成的銳角(或直角)相等。四典例解析題型1:直線間的距離問題例1已知正方體的棱長為1,求直線DA與AC的距離。 解法1:如圖1連結(jié)AC,則AC面ACD,連結(jié)DA、DC、DO,過O作OEDO于E因?yàn)锳C面BBDD,所以ACOE。又ODOE,所以O(shè)E面ACD。 因此OE為直線DA與AC的距離。在RtOOD中,可求得點(diǎn)評(píng):此題是異面直線的距離問題:可作出異面直線的公垂線。圖2 解法2:如圖2連接AC、DC、BC、ABA,得到分別包含DA和AC的兩個(gè)平面ACD和平面ABC, 又因?yàn)锳CAC,ADBC,所以面ACD面ABC。 故DA與AC的距離就是平面ACD和平面ABC的距離,連BD分別交兩平面于兩點(diǎn),易證是兩平行平面距離。 不難算出,所以,所以異面直線BD與之間的距離為。點(diǎn)評(píng):若考慮到異面直線的公垂線不易做出,可分別過兩異面直線作兩平面互相平行,則異面直線的距離就是兩平面的距離。題型2:線線夾角例2如圖1,在三棱錐SABC中,求異面直線SC與AB所成角的余弦值。圖1 解法1:用公式 當(dāng)直線平面,AB與所成的角為,l是內(nèi)的一條直線,l與AB在內(nèi)的射影所成的角為,則異面直線l與AB所成的角滿足。以此為據(jù)求解。 由題意,知平面ABC,由三垂線定理,知,所以平面SAC。 因?yàn)?,由勾股定理,?。 在中,在中,。 設(shè)SC與AB所成角為,則, 解法2:平移過點(diǎn)C作CD/BA,過點(diǎn)A作BC的平行線交CD于D,連結(jié)SD,則是異面直線SC與AB所成的角,如圖2。又四邊形ABCD是平行四邊形。由勾股定理,得:。圖2在中,由余弦定理,得:。點(diǎn)評(píng):若不垂直,可經(jīng)過如下幾個(gè)步驟求解:(1)恰當(dāng)選點(diǎn),作兩條異面直線的平行線,構(gòu)造平面角;(2)證明這個(gè)角(或其補(bǔ)角)就是異面直線所成角;(3)解三角形(常用余弦定理),求出所構(gòu)造角的度數(shù)。題型3:點(diǎn)線距離例3(2002京皖春,15)正方形ABCD的邊長是2,E、F分別是AB和CD的中點(diǎn),將正方形沿EF折成直二面角(如圖所示).M為矩形AEFD內(nèi)一點(diǎn),如果MBE=MBC,MB和平面BCF所成角的正切值為,那么點(diǎn)M到直線EF的距離為 。解析:過M作MOEF,交EF于O,則MO平面BCFE.如圖所示,作ONBC,設(shè)OM=x,圖又tanMBO=,BO=2x又SMBE=BEMBsinMBE=BEMESMBC=BCMBsinMBC=BCMNME=MN,而ME=,MN=,解得x=。點(diǎn)評(píng):該題較典型的反映了解決空間幾何問題的解題策略:化空間問題為平面問題來處理。題型4:點(diǎn)面距離例4(2006福建理,18)如圖,四面體ABCD中,O、E分別BD、BC的中點(diǎn),CA=CB=CD=BD=2。()求證:AO平面BCD;()求異面直線AB與CD所成角的大??;()求點(diǎn)E到平面的距離。(1)證明:連結(jié)OC。BO=DO,AB=AD, AOBD。BO=DO,BC=CD, COBD。在AOC中,由已知可得AO=1,CO=。而AC=2,AO2+CO2=AC2,AOC=90,即AOOC。AB平面BCD。()解:取AC的中點(diǎn)M,連結(jié)OM、ME、OE,由E為BC的中點(diǎn)知MEAB,OEDC。直線OE與EM所成的銳角就是異面直線AB與CD所成的角。在OME中,是直角AOC斜邊AC上的中線,異面直線AB與CD所成角的大小為()解:設(shè)點(diǎn)E到平面ACD的距離為h.,SACD =AOSCDE.在ACD中,CA=CD=2,AD=,SACD=而AO=1, SCDE=h=點(diǎn)E到平面ACD的距離為。點(diǎn)評(píng):本小題主要考查直線與平面的位置關(guān)系、異面直線所成的角以及點(diǎn)到平面的距離等基本知識(shí),考查空間想象能力、邏輯思維能力和運(yùn)算能力。題型5:線面距離例5斜三棱柱ABCA1B1C1中,底面是邊長為4cm的正三角形,側(cè)棱AA1與底面兩邊AB、AC均成600的角,AA1=7。(1)求證:AA1BC;(2)求斜三棱柱ABCA1B1C1的全面積;(3)求斜三棱柱ABCA1B1C1的體積;(4)求AA1到側(cè)面BB1C1C的距離。解析:設(shè)A1在平面ABC上的射影為0。 A1AB=A1AC, O在BAC的平行線AM上。 ABC為正三角形, AMBC。又AM為A1A在平面ABC上的射影, A1ABC (2) B1BA1A, B1BBC,即側(cè)面BB1C1C為矩形。 又, S全= (3) cosA1AB=cosA1AOcosOAB, cosA1AO= sinA1AO=, A1O=A1AsinA1AO= (4)把線A1A到側(cè)面BB1C1C的距離轉(zhuǎn)化為點(diǎn)A或A1到平面BB1C1C的距離為了找到A1在側(cè)面BB1C1C上的射影,首先要找到側(cè)面BB1C1C的垂面設(shè)平面AA1M交側(cè)面BB1C1C于MM1 BCAM,BCA1A BC平面AA1M1M 平面AA1M1M側(cè)面BCC1B1在平行四邊形AA1M1M中過A1作A1HM1M,H為垂足則A1H側(cè)面BB1C1C 線段A1H長度就是A1A到側(cè)面BB1C1C的距離 點(diǎn)評(píng):線面距離往往轉(zhuǎn)化成點(diǎn)面距離來處理,最后可能轉(zhuǎn)化為空間幾何體的體積求得,體積法不用得到垂線。題型6:線面夾角例6(2006浙江理,17)如圖,在四棱錐P-ABCD中,底面為直角梯形,ADBC,BAD=90,PA底面ABCD,且PAAD=AB=2BC,M、N分別為PC、PB的中點(diǎn)。()求證:PBDM; ()求CD與平面ADMN所成的角的正弦值。解析:(I)因?yàn)槭堑闹悬c(diǎn),所以。因?yàn)槠矫?,所以,從而平?因?yàn)槠矫妫?(II)取的中點(diǎn),連結(jié)、,則,所以與平面所成的角和與平面所成的角相等。因?yàn)槠矫?,所以是與平面所成的角。在中,。點(diǎn)評(píng):本題主要考查幾何體的概念、線面夾角、兩平面垂直等。能力方面主要考查空間想象能力、邏輯思維能力和運(yùn)算能力。題型7:面面距離例7在長方體ABCDA1B1C1D1中,AB=4,BC=3,CC1=2,如圖:(1)求證:平面A1BC1平面ACD1;(2)求(1)中兩個(gè)平行平面間的距離;(3)求點(diǎn)B1到平面A1BC1的距離。(1)證明:由于BC1AD1,則BC1平面ACD1,同理,A1B平面ACD1,則平面A1BC1平面ACD1。(2)解:設(shè)兩平行平面A1BC1與ACD1間的距離為d,則d等于D1到平面A1BC1的距離。易求A1C1=5,A1B=2,BC1=,則cosA1BC1=,則sinA1BC1=,則S=。由于,則Sd=BB1,代入求得d=,即兩平行平面間的距離為。(3)解:由于線段B1D1被平面A1BC1所平分,則B1、D1到平面A1BC1的距離相等,則由(2)知點(diǎn)B1到平面A1BC1的距離等于。點(diǎn)評(píng):立體幾何圖形必須借助面的襯托,點(diǎn)、線、面的位置關(guān)系才能顯露地“立”起來。在具體的問題中,證明和計(jì)算經(jīng)常依附于某種特殊的輔助平面即基面。這個(gè)輔助平面的獲取正是解題的關(guān)鍵所在,通過對(duì)這個(gè)平面的截得,延展或構(gòu)造,綱舉目張,問題就迎刃而解了。題型8:面面角例8(2006四川理,19)如圖,在長方體中,分別是的中點(diǎn),分別是的中點(diǎn),。()求證:面;()求二面角的大小。()求三棱錐的體積。解析:()證明:取的中點(diǎn),連結(jié) 分別為的中點(diǎn),面,面 面面 面()設(shè)為的中點(diǎn)為的中點(diǎn) 面作,交于,連結(jié),則由三垂線定理得。從而為二面角的平面角。在中,從而。在中,故二面角的正切值為。(),作,交于,由面得,面,在中,。點(diǎn)評(píng):求角和距離的基本步驟是作、證、算。此外還要特別注意融合在運(yùn)算中的推理過程,推理是運(yùn)算的基礎(chǔ),運(yùn)算只是推理過程的延續(xù)。如求二面角,只有根據(jù)推理過程找到二面角后,進(jìn)行簡(jiǎn)單的運(yùn)算,才能求出。因此,求角與距離的關(guān)鍵還是直線與平面的位置關(guān)系的論證。五思維總結(jié)空間的角和距離是空間圖形中最基本的數(shù)量關(guān)系,空間的角主要研究射影以及與射影有關(guān)的定理、空間兩直線所成的角、直線和平面所成的角、以及二面角和二面角的平面角等解這類問題的基本思路是把空間問題轉(zhuǎn)化為平面問題去解決1空間的角,是對(duì)由點(diǎn)、直線、平面所組成的空間圖形中各種元素間的位置關(guān)系進(jìn)行定量分析的一個(gè)重要概念,由它們的定義,可得其取值范圍,如兩異面直線所成的角(0,),直線與平面所成的角,二面角的大小,可用它們的平面角來度量,其平面角(0,)。對(duì)于空間角的計(jì)算,總是通過一定的手段將其轉(zhuǎn)化為一個(gè)平面內(nèi)的角,并把它置于一個(gè)平面圖形,而且是一個(gè)三角形的內(nèi)角來解決,而這種轉(zhuǎn)化就是利用直線與平面的平行與垂直來實(shí)現(xiàn)的,因此求這些角的過程也是直線、平面的平行與垂直的重要應(yīng)用通過空間角的計(jì)算和應(yīng)用進(jìn)一步培養(yǎng)運(yùn)算能力、邏輯推理能力及空間想象能力(1)求異面直線所成的角,一般是平移轉(zhuǎn)化法。方法一是在異面直線中的一條直線上選擇“特殊點(diǎn)”,作另一條直線的平行線;或過空間任一點(diǎn)分別作兩異面直線的平行線,這樣就作出了兩異面直線所成的角,構(gòu)造一個(gè)含的三角形,解三角形即可。方法二是補(bǔ)形法:將空間圖形補(bǔ)成熟悉的、完整的幾何體,這樣有利于找到兩條異面直線所成的角。(2)求直線與平面所成的角,一
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 模擬芯片市場(chǎng)分析
- 宿遷輔警考試題庫2025(有答案)
- 2025年山東省環(huán)保發(fā)展集團(tuán)有限公司招聘考試試題(含答案)
- 老年清潔護(hù)理課件
- 老年護(hù)理溝通教學(xué)課件
- 2025年白板市場(chǎng)調(diào)研報(bào)告
- 2025年安全工作述職報(bào)告范例(三)
- 老師健康課件
- 景觀園林彩鋼房安裝與維護(hù)合同
- 餐飲業(yè)員工權(quán)益保護(hù)與勞動(dòng)仲裁協(xié)議
- 職業(yè)行為習(xí)慣課件
- 租賃住房培訓(xùn)課件下載
- 高校智能化教學(xué)評(píng)價(jià)體系變革的技術(shù)創(chuàng)新路徑研究
- 高中復(fù)讀協(xié)議書
- 2024年甘肅省臨澤縣教育局公開招聘試題含答案分析
- 2025-2030中國戊烷發(fā)泡劑市場(chǎng)深度解析及前景運(yùn)行動(dòng)態(tài)研究報(bào)告
- 糖尿病足截肢術(shù)后護(hù)理
- 廣東省東莞市2022-2023學(xué)年高二下學(xué)期期末物理試題(含答案)
- 移植物抗宿主病分期及護(hù)理
- 2024年深圳市中考生物試卷真題(含答案解析)
- 新疆維吾爾自治區(qū)2024年普通高校招生單列類(選考外語)本科二批次投檔情況 (理工)
評(píng)論
0/150
提交評(píng)論